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Abstract

In the context of a dynamic model with incomplete information, we isolate a novel mechanism of shock 
propagation. We term the mechanism confounding dynamics because it arises from agents’ optimal signal 
extraction efforts on variables whose dynamics—as opposed to super-imposed noise—prevents full revela-
tion of information. Employing methods in the space of analytic functions, we are able to obtain analytical 
characterizations of the equilibria that generalize the celebrated Hansen-Sargent optimal prediction for-
mula. Our main theorem establishes conditions under which confounding dynamics emerge in equilibrium 
in general settings. We apply our results to a canonical one-sector real business cycle model with dispersed 
information. In that setting, confounding dynamics is shown to amplify the propagation of a productivity 
shock, producing hump-shaped impulse response functions.
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1. Introduction

Modeling and seeking to understand economic fluctuations is one of the cornerstones of mod-
ern economics. The role of incomplete information in this endeavor was acknowledged very 
early on by Pigou (1929) and Keynes (1936). Their ideas were first formalized in a rational ex-
pectations setting by Lucas (1972, 1975), King (1982) and Townsend (1983b). The underlying 
theme that ties these papers together is that unresolved uncertainty—in and of itself—can be a 
source of fluctuation in the economy. This idea has seen a resurgence. Dynamic models with 
dispersed information are becoming increasingly prominent in several literatures such as asset 
pricing, optimal policy communication, international finance, and business cycles.1 Our paper 
contributes to this literature by introducing a novel mechanism of shock propagation, which we 
call confounding dynamics, and does so in a manner that permits tractability.

Confounding dynamics arise from optimal prediction (i.e. rational expectations) in which past 
realizations of economic shocks prevent full revelation of information today, even when an arbi-
trarily large amount of data is available. Ensuring confounding dynamics emerge in equilibrium 
amounts to deriving non-invertibility restrictions on the equilibrium system of equations. If this 
system is non-invertible in current and past observations, agents will never fully unravel the con-
temporaneous economic shock. Our primary example of Section 5, which is based on the real 
business cycle model of Lucas (1975), shows that non-invertibility of the exogenous process is 
not a necessary condition for confounding dynamics. The model’s cross-equation restrictions en-
dogenously generate non-invertible representations, even when the exogenous process is always 
invertible. Confounding dynamics can also persist when the number of observables is equal to 
the number of shocks and therefore, our approach does not rely on the need to overrun the agent’s 
information set with exogenous noise.

We articulate the idea of confounding dynamics in three steps. First, Section 2 derives an opti-
mal prediction formula under confounding dynamics that extends the celebrated Hansen-Sargent 
formula, and makes an explicit connection to these dynamics. Subsequently, we demonstrate that 
this behavior carries over to a generic rational expectations model with dispersed information. 
Our main theorem contains two equations—one that characterizes the dynamic properties of the 
equilibrium when confounding dynamics are present and one that derives restrictions that guaran-
tee confounding dynamics are preserved in equilibrium. Finally, we provide economic intuition 
by introducing confounding dynamics into a standard Real Business Cycle model. This applica-
tion showcases the central insight coming from our main theorem and the defining property of 
confounding dynamics. The insight is that permitting information to arise endogenously in the 
context of a model opens the door to an equilibrium that is usually overlooked when informa-
tion is exogenously provided to agents. Our analytical representation allows us to carefully show 
how confounding dynamics interacts with crucial parameters of the model. For example, as the 
elasticity of substitution increases, endogenous variables become more informative and it is more 
difficult to maintain confounding dynamics in equilibrium. The defining property of confounding 
dynamics is an impulse response function that is amplified and more persistent relative to the full 
information equilibrium. There are two possible shapes of an impulse response to a fundamental 

1 The literature is too voluminous to cite every worthy paper. Recent examples include: Woodford (2003), Pearlman 
and Sargent (2005), Allen et al. (2006), Bacchetta and van Wincoop (2006), Hellwig (2006), Adam (2007), Gregoir and 
Weill (2007), Angeletos and Pavan (2007), Kasa et al. (2014), Lorenzoni (2009), Rondina (2009), Angeletos and La’O 
(2009), Angeletos and La’O (2013), Hellwig and Venkateswaran (2009), Graham and Wright (2010), Nimark (2010), 
Hassan and Mertens (2011), Benhabib et al. (2015), Huo and Takayama (2016) and Angeletos and Lian (2016).
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shock under confounding dynamics: [i.] fluctuations around the full information counterpart that 
display the “waves of optimism and pessimism” of Pigou (1929); and [ii.] an amplified impulse 
response function that is hump-shaped. We discuss both scenarios in the context of exogenous 
signal extraction in Section 2. Section 5 focuses on the latter type of impulse response and argues 
that confounding dynamics—without additional frictions—can provide the internal propagation 
necessary to match important moments of the data along the lines discussed in Cogley and Nason 
(1995).

We solve and analyze the rational expectations equilibrium in the space of analytic functions. 
This approach has several advantages vis-a-vis standard time-domain methods. For example, as 
emphasized in Townsend (1983a), equilibria are sought in generic functional spaces spanned by 
linear combinations of shocks, which allows one to avoid explicitly modeling higher-order belief 
dynamics. Moreover, the matrix Ricatti equation typical of Kalman filtering is replaced by a more 
transparent spectral factorization problem. This allows us to solve and analyze the equilibrium 
in closed form. We are not the first to advocate such an approach. Others, such as Futia (1981), 
Townsend (1983a), Taub (1989), Kasa (2000), Walker (2007), Rondina (2009), Bernhardt et al. 
(2010), Kasa et al. (2014), and Huo and Takayama (2016) have used similar techniques to solve 
dynamic rational expectation models with incomplete information. We contribute to this litera-
ture by deriving analytical representations (e.g., generalized Hansen-Sargent formulas) and by 
providing a systematic treatment of equilibrium conditions in models with dispersed informa-
tion that display confounding dynamics. Futia (1981) and Townsend (1983a) were the first to 
advocate for the use of analytic functions to solve dynamic rational expectations models with 
heterogeneous information. Many of the mathematical antecedents of this paper can be found 
there and in Whiteman (1983). Taub (1989) demonstrates how the algebra associated with dy-
namic signal extraction (i.e., spectral factorization) is simplified through the analytic function 
approach. We take advantage of these formulas to completely characterize existence and unique-
ness of equilibria in dispersed informational setups. Bernhardt et al. (2010) and Kasa et al. (2014)
do not examine models with dispersed information, but show how these methods can be used to 
help resolve asset pricing anomalies.

2. Prediction with confounding dynamics

To study our primary mechanism, we present a simple version of the prediction problem that 
operates at the heart of the rational expectations equilibria with confounding dynamics. For the 
reader unfamiliar with frequency domain methods we provide a primer in Appendix C.

Consider the univariate process specified as

st = −λεt + εt−1 = (L − λ)εt , (1)

where εt is a mean-zero, normally distributed variable with variable σ 2
ε . Suppose that the predic-

tion problem is to compute the mean-squared error minimizing prediction for εt given that st is 
observed. To fix ideas and foreshadow results, imagine that εt is the time-t unobserved innovation 
in aggregate productivity in the economy, while st is the observed market rental rate of physical 
capital. The prediction problem asks for an estimate of the current productivity innovation using 
the history of the market rental rate.

To solve the problem, we need to consider two possible cases. If |λ| ≥ 1, the process is deemed 
fundamental for εt using the terminology of Rozanov (1967), which means that the stochastic 
process (1) is invertible in current and past observables; therefore there exists a linear combi-
nation of current and past st ’s that allows the exact recovery of εt . Defining the lag operator 
3
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Lxt = xt−1, one can easily verify that with |λ| ≥ 1, L − λ is an invertible operator, and the 
optimal prediction corresponds to

P(εt |st ) = st

L − λ
= − 1

λ

(
st + λ−1st−1 + λ−2st−2 + λ−3st−3 + ...

) = εt , (2)

which verifies that the history of st contains all the information needed to perfectly know εt .
Consider now the case of |λ| < 1. Clearly, the prediction formula (2) is no longer well defined 

as the coefficients diverge. In this simple environment, Rozanov (1967) shows that the appro-
priate factorization requires flipping the root λ outside of the unit circle through the use of a 
Blaschke factor, which we denote as B(L) = (1 − λL)/(L − λ).2 Applying the Blaschke factor 
results in the optimal prediction,

P(εt |st ) = − λ

1 − λL
st = −λ

(
st + λst−1 + λ2st−2 + λ3st−3 + ...

) = −λ

(
L − λ

1 − λL

)
εt . (3)

Note that the mean squared forecast error of 
(
1 − λ2

)
σ 2

ε > 0, demonstrating that as |λ| ap-
proaches one from below there is exact recovery of εt .

When the process is non-invertible, (3) shows that the history of current and past st ’s reveals 
a particular linear combination of εt ’s. Expanding this last term yields

P(εt |st ) = λ2εt︸︷︷︸ − (1 − λ2)[λεt−1 + λ2εt−2 + λ3εt−3 + · · · ]︸ ︷︷ ︸ . (4)

information + noise from confounding dynamics

Thus, the noise resulting from confounding dynamics takes an unusual form as it consists of a 
linear combination of past realizations of εt . Expression (4) suggests that the process (1) is in-
formationally equivalent to a noisy signal about εt , where the noise is the linear combination of 
past shocks (in the bracketed term), and the signal-to-noise ratio is measured by λ2. A λ closer 
to zero results in less information and more noise but, at the same time, it also makes past shocks 
less persistent. As λ → 0, there is no information in st about εt and the optimal prediction is 0, 
the unconditional average. As long as |λ| ∈ (−1, 1), the value of εt will never be learned and in 
this sense, the history of the fundamental shock acts as a noise shock but (as shown below) has 
non-standard properties. This is the defining property of confounding dynamics. The shocks are 
perfectly correlated and no super-imposed noise process is necessary to keep full revelation of 
information from occurring. An infinite history of past shocks is not sufficient because the dy-
namic history of the shock confounds agents into making forecast errors that would be persistent 
under the standard full-information rational expectations case.

2 Specifically, the Blaschke factor flips the zero from inside the unit circle to outside the unit circle via the transforma-
tion

(L − λ)

(
1 − λL

L − λ

)(
L − λ

1 − λL

)
εt

Note that B(L)B(L)−1 = 1, and therefore, the Blaschke factor does not alter the covariance generating function of the 
time series.
4
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2.1. Economic interpretation

We now provide some economic intuition as it relates to our signal extraction problem, noting 
that additional intuition is found in Section 5, where we embed this learning mechanism in a real 
business cycle model.

Comparing representation (1), which we repeat here for convenience, st = (L − λ)εt , to the 
fundamental representation used to form the optimal prediction (2), st = (1 − λL)ε̃t where 
ε̃t = B(L)−1εt , we see that information is discounted differently. Under full information (as-
suming agents observe the underlying shocks directly), last period’s shock would be discounted 
more heavily relative to the contemporaneous shock, recall |λ| < 1. This discounting is exactly 
reversed when agents have confounding dynamics (assuming agents only observe st ) with the 
contemporaneous shock receiving the more significant discount. Therefore, innovations entering 
the agents’ information sets will be discounted differently from the full-information case when 
confounding dynamics is operational. The extent of the difference in discounting is dictated en-
tirely by the parameter λ: as λ approaches zero (one), the difference will be large (small).

An alternative interpretation comes from noting that confounding dynamics nests the sticky 
information setup of Mankiw and Reis (2002). When λ = 0, innovations are observed by agents 
with a one-period lag, in accordance with sticky information. One might argue that this as-
sumption is too strong in that agents may not ignore all information with a one-period lag. Our 
representation allows for a more continuous interpretation. As |λ| approaches one from below 
starting from zero, agents become more informed. For |λ| ≥ 1, all information is revealed. In 
principle, one could estimate this parameter using standard methods in a DSGE model. The esti-
mate of λ would then determine the optimal amount of “stickiness” as dictated by data. Several 
papers argue that sticky information is a natural setup because it can reconcile macro price rigid-
ity with micro price flexibility [Klenow and Willis (2007)] and survey expectations of inflation 
[Coibion and Gorodnichenko (2012)]. Our approach suggests there is even more flexibility along 
this dimension.

Finally, we note that the econometrics literature has seen a renewed interest in identification 
of vector auto-regressions (VAR) in the presence of non-invertibilities [see, Canova and Sahneh 
(2017)]. One argument in favor of confounding dynamics is that if econometricians using so-
phisticated techniques have trouble cleanly identifying shocks to the macroeconomy, agents will 
most likely suffer from similar identification problems, implying non-invertibilities are more 
likely than not. In this instance, theory can help with measurement because we, as modelers, 
can cleanly identify εt from ε̃t , and can then ask how the economy responds to the structural 
innovation, εt , when agents have incomplete information.

2.2. Connection to standard signal extraction

To make the connection to the standard signal extraction problem more explicit, suppose that 
agents observe an infinite history of the signal

xt = εt + ηt , (5)

where ηt
iid∼ N

(
0, σ 2

η

)
. The optimal prediction is well known and given by P(εt |xt ) = τxt , 

where τ is the relative weight given to the signal, τ = σ 2
ε /(σ 2

ε + σ 2
η ). It can be shown3 that 

3 See Online Appendix B.2 for a proof.
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Fig. 1. Panel A: Impulse Responses of xt and st to a one unit change in εt for signal-to-noise ratios of τ = 1/2, λ =
−1/

√
2 (dotted, solid blue) and τ = 1/10, λ = −1/

√
10 (dotted, dashed). Panel B: Impulse response of xt for λ = 1/

√
2

(solid) and λ = 1/
√

10 (dashed). (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

the information content of (1) with |λ| < 1 is equivalent to (5), where equivalence is defined 
as equality of variance of the forecast error conditioned on the infinite history of the observed 
signal, i.e.

E
[(

εt −P
(
εt |st

))2
]

= E
[(

εt −P
(
εt |xt

))2
]
,

when

λ2 = τ. (6)

Notice that when the signal-to-noise ratio increases (decreases), this corresponds to a higher 
(lower) absolute value of λ. In the limit, as σ 2

η → 0, then λ2 → 1, which ensures exact recovery 
of the state in both cases.

While the informational content can be made identical, the dynamics of the two signal ex-
traction problems are very different. To visualize this, we report the impulse response function 
for the prediction equations that contain confounding dynamics (4) and for the standard signal 
extraction problem (5) to a one time, one unit increase in εt in Fig. 1. We do this for both a low 
and high value of λ2 (resp. τ ).4

Figure A reports a negative value for the non-invertible root λ. Here the impulse response 
to (4) under-predicts the actual innovation on impact (which is one), with a smaller value of λ
under-predicting more significantly. This is due to the first term on the RHS of (4). The same 
is true for the standard signal extraction formulation (dashed lines). Agents weigh the initial in-
novation by the signal-to-noise ratio τ < 1 and therefore under-predict on impact. This is where 
the similarities end. With confounding dynamics, periods two through six show waves of over-
and under-prediction relative to the actual realization and relative to the standard signal extrac-
tion problem. As discussed above, the current and past innovations will persistently affect the 

4 For aesthetic reasons, the impulse responses are slightly smoothed at turning points.
6
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prediction function several periods beyond impact. This defining characteristic of confounding 
dynamics leads to the waves of over- and under-reaction. This is in contrast to the full informa-
tion case and standard signal-extraction case where the impulse response is zero after impact. 
As already pointed out, the smaller the λ, the larger the noise term in (4), but the less persis-
tent the over- and under-prediction. Thus optimal signal extraction with confounding dynamics 
generates fluctuations where the full-information and exogenously imposed noise counterparts 
generate none. Figure B shows that the under- and over-reaction is not the only form of the 
impulse response under confounding dynamics. A positive value for λ generates an (inverse) 
hump-shaped impulse response.5 Again, this can be seen from (4): the under-reaction on impact 
is the same independent of sign due to the λ2 term; a positive value for λ implies that the ele-
ments of the noise term of (4) all enter with the same sign, causing the impulse to return gradually 
from below. The larger the value of λ, the more the impulse overshoots. Therefore in either case, 
confounding dynamics adds persistence to the impulse where traditional signal extraction would 
not.

3. Model, information, and equilibrium

We now model confounding dynamics in a generic rational expectations formulation that 
permits many interpretations (e.g., monetary model, asset pricing model, etc.). We do this via 
dispersed information, which introduces well-known difficulties. We lay out a solution strategy 
and compare that strategy to alternative methodologies.

3.1. Model

We consider models that are populated by a continuum of agents indexed by i ∈ [0, 1]. Let 
μ(i) be the density of agent i characterized by the information set at time t , denoted by �it . We 
are interested in the class of models in which the individual optimal choice can be represented 
by the dynamic expectational difference equation,

φE
[
Xit+1

∣∣�it

] = ψ(L)Xit , (7)

where

Xit ≡ (
xit yt θit

)	 (8)

Here φ ≡ [φx φy φθ ], is a vector of coefficients, and ψ(L) ≡ [ψx(L) ψy(L) ψθ(L)], is a vector of 
square-summable lag polynomials in non-negative powers of L. xit is the choice variable under 
the control of the individual agent i; yt is an endogenous aggregate variable that agents take as 
given, and θit is an exogenous stochastic process specified as the sum of an aggregate component 
θt and an i.i.d. individual component vit . Formally

θit = θt + vit , where θt = A(L)εt , (9)

with vit ∼ N (0, σv), εt ∼ N (0, σε), and A(L) is a square-summable polynomial in non-negative 
powers of L. Our main theorem will deliver the restrictions on parameters needed to ensure the 

5 In a different setting, Acharya et al. (2017) show that the combination of sentiment shocks and non-invertibilities can 
generate hump-shaped impulse response functions as well.
7
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equilibrium system of equations is non-invertible in current and past observations; i.e., that con-
founding dynamics obtains in equilibrium. To close the model we need to specify a relationship 
between the distribution of xit across agents, and the aggregate yt . We thus posit that

γ (L)

1∫
0

Xitμ(i)di = 0, (10)

where γ (L) ≡ [γx(L) γy(L) γθ (L)], is a vector of square-summable finite-degree lag polynomi-
als in non-negative powers of L, and we assume γx(L) 
= 0.6 As we proceed with the analysis it 
will be useful to think of equation (7) as representing a demand (or supply) schedule for agent 
i, and (10) as the relevant market clearing condition. However, the specific form depends on the 
particular application at hand.

The expectational difference equation (7) is a dispersed information version of the system 
originally considered by Blanchard and Kahn (1980), and subsequently studied by Uhlig (1999), 
Klein (2000) and Sims (2002), among others. Dispersed information implies that individual ex-
pectations are heterogeneous, which implies that the aggregation in (10) will result in taking an 
average of expectations. In particular, model (7)-(10) can accommodate both average expecta-
tions of aggregate variables and average expectations of individual variables.

3.2. Information

In our dispersed information setup, we assume that the information set �it of an arbitrary 
agent i at time t consists of the smallest closed subspace generated by the history of the random 
variable θ t

i ≡ {θit , θit−1, ...}, and the history of the aggregate variable yt = {yt , yt−1, ...}. Specif-
ically, �i

t = θ t
i ∨ yt , where the operator ∨ denotes the span (i.e., the smallest closed subspace 

which contains the subspaces) generated by the sequences θ t
i and yt . This notation simply sug-

gests that expectations will be taken optimally; i.e., they will be consistent with the prediction 
formulas discussed in Section 2. In a multivariate moving-average setting, the invertible rep-
resentation achieved via canonical factorization is the smallest closed subspace containing the 
observables, θ t

i and yt (see Hoffman (1962)).
Given (7), xit will be a function of the history of idiosyncratic innovations, vit , and the aggre-

gate innovations, εt , namely

xit = X(L)εt + V (L)vit . (11)

In addition, aggregation implies that yt is only a function of aggregate innovations, so that

yt = Y(L)εt . (12)

The signal structure can be thus represented as(
θit

yt

)
= �(L)

(
σ−1

ε εt

σ−1
v vit

)
, �(L) =

[
A(L)σε σv

Y (L)σε 0

]
. (13)

We point out that our information set is in line with the typical information set assumed in the 
dispersed information rational expectations literature: we provide agents with both an exogenous

6 We make this assumption in order to keep the connection between (7) and (10) non-trivial. Allowing for γx(L) = 0, 
would imply that yt is directly determined by the process θt , and, as a consequence, it would enter (7) as an exogenous 
variable, essentially duplicating the role of θt in that equation.
8
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signal about the aggregate unobserved state (θit ), and an endogenous signal that is determined 
in equilibrium (yt ). The analytical convenience of the signal structure (13), for our purposes, is 
that the invertibility of the matrix �(L) hinges only upon the zeros of Y(L). At the same time, 
the structure imposes analytical discipline that is uncommon in the literature: the endogenous 
signal yt can reveal perfectly the underlying state, under the appropriate parametrization of model 
(7)-(10). Thus, we aim at establishing both the degree to which information remains incomplete 
in equilibrium, along with the more standard existence and uniqueness conditions.

3.3. Examples

We pause briefly here to note that our general setup can handle a wide variety of models. Ap-
pendix B.7 carefully walks readers through four such examples: an RBC model, the asset pricing 
model of Singleton (1987), a model with Calvo pricing and a New Keynesian Phillips Curve, and 
the classical monetary models of inflation of Cagan (1956). Of course, this list is not exhaustive 
but there are two common characteristics in all of the examples: [i.] shocks are Gaussian and [ii.] 
the model can be written in a linear form. As with nearly all papers in this literature, our anal-
ysis relies on linear projections being consistent with optimal conditional expectations, which 
necessitates [i] and [ii].

3.4. Equilibrium definition

Uncertainty is assumed to be driven by Gaussian innovations, which, together with linearity, 
implies that conditional expectations are computed as optimal linear projections. We thus have

E
(
Xit+1

∣∣�it

) = P
[
Xit+1

∣∣�it

]
, (14)

and can apply the Wiener-Kolmogorov prediction formula (see Appendix C) to compute condi-
tional expectations. We are now ready to define a Rational Expectations Equilibrium for model 
(7)-(10).

Definition REE. A Rational Expectations Equilibrium (REE) is a stochastic process for {Xit , i ∈
[0,1]} and a stochastic process for the information sets {�it , i ∈ [0,1]} such that: (i) each agent 
i, given her information set, forms expectations according to (14); (ii) {Xit , i ∈ [0,1]} satisfies 
conditions (7)-(10).

The REE can be summarized by two statements: (a) given a distribution of information sets, there 
exists a market clearing distribution {Xit , i ∈ [0,1]} determined by each agent i’s optimal pre-
diction conditional on the information sets; (b) given a distribution {Xit, i ∈ [0,1]}, there exists a 
distribution of information sets that provides the basis for optimal prediction. Both statements (a) 
and (b) must be satisfied by the same distribution {Xit, i ∈ [0,1]} and the same distribution of in-
formation sets simultaneously in order to satisfy the requirements of a REE. This dual fixed point 
condition is standard in rational expectations with potentially heterogeneously informed agents 
and when endogenous variables convey information [see, Radner (1979) as an early example].

3.5. Weighted sum of expectations

Before discussing our solution methodology, we give a brief overview of the typical approach 
to solve model (7)-(10), which consists of two steps. The first step is to iteratively substitute the 
9
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endogenous variables xit+j and yt+j forward by leading (7) j periods forward and aggregating 
over agents. The end result is expressions for xit and yt , that are a function of expectations 
of the exogenous variable θt at all future horizons. The second step is then to compute those 
expectations, which is non-trivial due to the fact that the law of iterated expectations may not 
be operational. Most of the work that uses this approach rely on numerics to calculate these 
expectations.7

Consider the expression for φxEit (xit+1). Through forward substitution, this expression con-
tains the term φxEit+1(xit+2), which in turn contains θt+2. It follows that the law of iterated 
expectations (LIE) applies in this context so that φ2

xEitEit+1(θt+2) = φ2
xEit (θt+2), and aggrega-

tion implies φ2
xĒt (θt+2) for j = 2. Intuitively, in each round of the iterative substitutions there 

are terms where agent i is taking expectations of both her own future expectations and of future 
average expectations. The law of iterated expectations applies to the former, so that the order of 
expectations is reduced, but not to the latter.8 It should be evident at this point that the second 
step required by the canonical approach—computing closed form solutions for the expectations 
of arbitrary order—is a daunting task under dispersed information (for more details on this, see 
Appendix B.5). As already remarked and discussed thoroughly in the next section, we approach 
the solution from a different angle.

3.6. Solution methodology

Our aim is to characterize a REE equilibrium for model (7)-(10) with confounding dynam-
ics. The critical requirement for confounding dynamics to emerge is that the information matrix 
�(L), (13), must be non-invertible at a λ ∈ (−1, 1). However, there is no guarantee that this 
condition will hold. Consistent with the intuition of Townsend (1983a), our approach is to for-
mulate a guess for the endogenous variables that follows a generic polynomial in the underlying 
shocks, and then derive conditions on the exogenous parameters that yield non-invertibility in 
equilibrium.

Our main theorem (Theorem 1) and corollary in Section 5 restricts attention to functional 
forms with exactly one λ inside the unit circle. The solution procedure described below is con-
sistent with this restriction. However, equilibrium conjectures of functional forms with multiple 
λ’s inside the unit circle can be entertained within the procedure described below with appropri-
ate modifications. Appendix B.4 shows how to solve the exogenous signal extraction problem 
with multiple roots inside the unit circle, which provides a road map for how to modify Steps 1-4 
below to solve for the rational expectations equilibrium in that case.

The following steps describe our procedure when looking for an equilibrium with confounding 
dynamics.

1. Specify the guesses for xit and yt as generic polynomials of underlying shocks

xit = X(L)εt + V (L)vit , and yt = Y(L)εt , (15)

where yt has confounding dynamics, so that

7 Nimark (2010) and Melosi (2017) are recent examples of sophisticated numerical methods to characterize equilibria 
with dispersed information.

8 Mechanically, whether LIE applies or not at each iteration depends on the position of φx in the coefficients of the 
polynomial (φx + φy)j , i.e. on the set of permutations of size j of φy and φx with repetition. For instance, for the case 
of j = 2, the set of terms that multiply ψθ are (φ2

y + φyφx)Ēt Ēt+1(θt+2) + (φxφy + φ2
x)Ēt (θt+2).
10
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Y(λ) = 0, for λ ∈ (−1,1). (16)

2. Given the signal matrix �(L), obtain the so-called canonical factorization �∗(L) under (16)
(see Appendix C for a discussion of the canonical factorization).

3. Use �∗(L) together with the guesses in (15) to obtain the conditional expectations in (7) via 
the Wiener-Kolmogorov prediction formula.

4. Aggregate over agents according to (10) and use the relationship between X(L) and Y(L)

to substitute X(L) with Y(L) in (7). Both the right hand side and the left hand side will now 
be lag polynomial operators in εt and vit , and will thus provide the fixed point conditions 
for Y(L) and V (L).

5. Derive conditions on exogenous parameters so as to ensure that a determinate stationary 
solutions exists, and that there exists a |λ| < 1, verifying (16). Once Y(L) is solved for, use 
(10) to recover X(L).

Note that at no point in the solution procedure one needs to worry about higher-order expecta-
tions. The so-called “higher-order thinking” that complicates the iterative approach outlined in 
Section 3.5 is implicit in how the guess (15) combines with the information matrix �(L) to pro-
vide a closed form for the first order expectations in (7). As recognized by Townsend (1983a), 
by guessing a generic lag polynomial, the higher-order beliefs are built into the guess and we do 
not have to track these terms explicitly, although higher-order beliefs can be backed out of the 
solution in closed form. The same solution procedure is followed when we solve for an equilib-
rium with full information, with the only difference that condition (16) is not imposed, and thus 
does not have to be verified, and the signal matrix �(L) corresponds to full information.

4. Equilibrium with confounding dynamics

This section establishes the main result of the paper: the existence of a rational expectations 
equilibrium with confounding dynamics in a dispersed information environment.

4.1. Equilibrium with confounding dynamics: main theorem

In this section we state our main Theorem, which provides conditions under which a REE 
with Confounding Dynamics exists. As stated in Section 3.2, we specify the information set as

�it = θ t
i ∨ yt (17)

Agents thus observe the entire history of the exogenous process θit up to time t , together with the 
history of the aggregate variable yt . In addition, the model equations (7)-(10) are both common 
knowledge across agents.

An important building block in the statement of our main theorem is the full information 
benchmark solution which we denote by, xit = X (L)εt + V(L)vit , and yt = Y(L)εt , where 
X (L), V(L) and Y(L) are square-summable lag polynomial in non-negative powers of L. In 
the full information solution, each agent i is provided with the entire history of shocks, εt and 
vit , up to time t . The derivation of the full information solution is reported in Appendix A.1. 
Here we point out that to ensure uniqueness (determinacy) of a full information solution, the 
characteristic polynomials of the expectational difference equations for V(L) and Y(L), which 
are defined respectively by φx(L) ≡ φx − ψx(L), and 
(L) ≡ φx(L) + φy − ψy(L)L, must 
satisfy a standard regularity condition, which corresponds to our Assumption 1.
11
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Assumption 1. The polynomials φx(L) and 
(L) each have exactly one root inside the unit 
circle.

It is important to note that this assumption does not correspond to a special case, nor is overly 
restrictive. It amounts to restricting equilibria to stationary processes both within the cross-
section and time series dimensions of the model. Requiring 
(L) to have one root inside the 
unit circle is the standard assumption necessary to yield a unique rational expectations equilib-
rium (e.g., Sims (2002)) and it immediately implies that 
(L) can be factorized as


(L) = (ζ − L)
̃(L), (18)

where |ζ | < 1, and 
̃(L) has no roots inside the unit circle. If the polynomial had no such roots 
inside the unit circle, the RE equilibrium would not be unique; and if the polynomial had multiple 
roots inside the unit circle, no stationary equilibrium would exist. Similarly, requiring φx(L) to 
have one root inside the unit circle ensures that the cross-sectional distribution is well defined 
at any point in time. In the equilibrium with confounding dynamics, the expectational difference 
equations for V (L) and Y(L) contain the same characteristic polynomials φx(L) and 
(L) of the 
full information benchmark, and we thus also impose the regularity conditions of Assumption 1
in Theorem 1.

Recall that the key requirement in solving for an equilibrium with confounding dynamics is 
that there exists a λ ∈ (−1, 1) such that Y(λ) = 0. We are interested in finding restrictions on 
exogenous parameters so that a λ that satisfies such requirement exists. Theorem 1 states our 
main result.

Theorem 1. Consider model (7)-(10) with Assumption 1. Let the information sets be specified as 
in �it = θ t

i ∨ yt . There exists a Rational Expectations Equilibrium with Confounding Dynamics 
of the form, yt = Y(L)εt , with

Y(L) = Y(L) − (
1 − τ(λ)

)(
1 − λ2) A(λ)

(1 − λL)
̃(L)
, (19)

if there exists a λ ∈ (−1, 1) that solves

Y(λ)
̃(λ) = (
1 − τ(λ)

)
A(λ), (20)

where Y(L) is the full information solution, τ(λ) ≡ A(λ)2σ 2
ε

A(λ)2σ 2
ε +σ 2

v
, A(λ) is a function of λ that 

depends only on exogenous parameters, and Y(L) in (19) has a zero inside the unit circle equal 
to λ.

Proof. See Appendix A.2. �
Theorem 1 provides sufficient conditions for the existence of an equilibrium that belongs to a 
class in which Y(L) takes a functional form with exactly one zero inside the unit circle, that is 
Y(L) = (L − λ)G(L), where G(L) is a stationary lag polynomial with no zeros inside the unit 
circle. Within the “exactly one zero” class, condition (20) might be satisfied by more than one 
numerical value for λ. Each value corresponds to a legitimate equilibrium within the class once 
substituted into (19) because the fixed-point conditions would be satisfied. These equilibria are 
indexed by information, since each distinct numerical value of λ reflects how much information 
12
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is revealed in equilibrium. The notion of “multiplicity” in this scenario is not related to the well-
known indeterminacy criteria in rational expectations models, where a continuum of equilibria 
exists. In fact, Assumption 1 rules out that type of multiplicity here. Theorem 1 does allow for 
more than one rational expectations equilibrium in the “exactly one zero” class, and such equi-
libria are “locally unique” in the sense that small perturbations of the information sets will not 
lead to an alternative λ-value and therefore will not diverge to an alternative rational expectations 
equilibrium.

4.2. Outline of proof

The proof consists of four steps and can be found in its entirety in Appendix A.2. We briefly 
discuss each step, relegating tedious algebra to the appendix.

STEP 1: FACTORIZATION We operationalize the key requirement that Y(λ) = 0 for λ ∈ (−1, 1)

by specifying a guess of the form Y(L) = (L − λ)G(L), where G(L) has no zeros inside the 
unit circle. The first step in the proof is to then use the equilibrium guess to derive the canonical 
factorization for the information set, which can be written as(

θit

yt

)
=

[
A(L)σε σv

(L − λ)G(L)σε 0

](
ε̃t

ṽit

)
, (21)

where εt = σεε̃t , vit = σvṽit , is a convenient normalization so that the variance-covariance ma-
trix of the innovations vector is the identity matrix. The following lemma gives the canonical 
factorization for �(L).

Lemma 1. The canonical factorization �∗(z)�∗(z−1)T of the variance-covariance matrix 
�(z)�(z−1)T , is given by

�∗(z) = 1√
A(λ)2σ 2

ε +σ 2
v

[
A(z)A(λ)σ 2

ε + σ 2
v σεσv

1−λz
z−λ

(
A(z) − A(λ)

)
A(λ)σ 2

ε (z − λ)G(z) σεσvG(z)(1 − λz)

]
. (22)

Proof. See Appendix A.2. �
STEP 2: EXPECTATIONS Equipped with the canonical factorization (22), we next derive the three 
expectational terms: Eit (xit+1), Eit (yt+1), and Eit (θit+1) from direct application of the Wiener-
Kolmogorov prediction formula. The last two follow directly,

Eit

(
θit+1
yt+1

)
= [

L−1�∗(L)
]
+�∗(L)−1

(
θit

yt

)
.

However, the term Eit (xit+1), is substantially more involved to derive, due to the fact that the 
correlation between xit+1 and θit exists not only because they both depend on εt , but they also 
both depend on vit . Formally, the application of the Wiener-Kolmogorov formula leads to

Eit (xit+1) =
[
L−1gxi ,(θi ,y)(L)

(
�∗(L−1)T

)−1
]
+�∗(L)−1

(
θit

yt

)
,

where gxi,(θi ,y)(L) is the variance-covariance generating function between xi and the information 
set. Given the equilibrium guess, such a function takes the form

gx ,(θ ,y)(L) = [
X(L)A(L−1)σ 2 + V (L)σ 2 X(L)(L−1 − λ)G(L−1)σ 2

]
.

i i ε v ε

13
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A bit of algebra gives

L−1gxi ,(θi ,y)(L)
(
�∗(L−1)T

)−1

=
[
L−1(V (L)σ 2

v + X(L)σ 2
ε A(λ)

)
σεσvL

−1 1−λL
L−λ

(
X(L) − V (L)A(λ)

)]
.

Acknowledging that the terms have the usual principal part around L = 0 and around L = λ, it 
follows that

Eit (xit+1) =L−1
[
X(L) − X(0)

]
εt − (

1 − τ(λ)
) 1−λ2

λ(1−λL)

[
X(λ) − X(0)

− (
V (λ) − V (0)

)
A(λ)

]
εt

+ L−1
[
V (L) − V (0)

]
vit + τ(λ)

A(λ)
1−λ2

λ(1−λL)

[
X(λ) − X(0)

− (
V (λ) − V (0)

)
A(λ)

]
vit . (23)

STEP 3: FIXED POINT. Next, we need to derive and check the fixed-point conditions. This 
amounts to algebraic manipulations that serve to get the model in the form such that existence 
and uniqueness criteria can be invoked, as well as the condition Y(λ) = 0. Here we report the 
part of the proof that focuses on making sure that the fixed point in information is established. 
The proof consists in checking that when the equilibrium coefficients are evaluated using a λ
that solves (20), there are no other points at which Y(L) vanishes inside the unit circle. More 
precisely, it has to be that there is no ξ 
= λ that solves

Y(ξ)
̃(ξ) = (1 − τ(λ))(1 − λ2)
A(λ)

1 − λξ
, (24)

such that |ξ | ∈ (−1, 1). If such a ξ existed, the information conveyed by yt in equilibrium would 
be inconsistent with the information used to compute the expectations that are part of the fixed 
point. To see this, suppose that for a given λ that solves (20), a |ξ | < 1 that satisfies (24) exists. 
The Y(L) solution computed using that λ would have, by construction, another zero at ξ . If we 
denote that solution by Ỹ (L) = G̃(L)(L − λ)(L − ξ), the factorization (22) would only remove 
the zero associated with λ so that Step 1 above would give

�∗(L) = 1√
A(λ)2σ 2

ε +σ 2
v

[
A(L)A(λ)σ 2

ε + σ 2
v σεσv

1−λL
L−λ

(
A(L) − A(λ)

)
A(λ)σ 2

ε (L − λ)(L − ξ)G̃(L) σεσvG̃(L)(L − ξ)(1 − λL)

]
.

(25)

Note that the determinant of �∗(L) in (25) vanishes at L = |ξ | < 1, so the factorization will 
result in expectations that are conditioned on an information set that is inconsistent with the 
information revealed in equilibrium. In other words, for the specific λ under consideration, the 
fixed point in information at the heart of Theorem 1 would fail to be verified.

If no equilibria with confounding dynamics with exactly one zero can be found, one can mod-
ify the initial guess and consider N > 1 roots inside the unit circle, looking then for a condition 
analogue to (20) to deliver exactly N solutions. We restrict our attention to N = 1 for simplicity 
and because the full description of the space of REE with confounding dynamics is beyond the 
scope of this paper, but we hope it is clear that our methods extend to the more general case.

STEP 4: NO INFORMATION FROM THE MODEL The last thing to check to complete the proof is 
to ensure that there is no information that is transmitted by a clever manipulation of the model 
14
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conditions – which are part of the information set of the agents – combined with the knowledge of 
the history of θit and yt . For instance, suppose that the market clearing condition (10) is specified 
so that 

∫ 1
0 xitμ(i)di = yt , which means that yt is the aggregate of xit , then this would imply 

X(L) = Y(L), which would result in xit − yt = V (L)vit . Because rational agents know this, 
they know that the difference xit − yt is just a linear combination of the individual innovations 
vit . It follows that they could, in principle, back out the realizations of vit ’s by inverting V (L). 
More generally, the link between X(L) and Y(L) due to (10) can be used by rational agents 
to obtain additional information on the underlying innovations. For this not to happen, if one 
augments the information set of the agents by xit − yt , the information matrix must still be non-
invertible at λ. The following Lemma shows that this is indeed the case for the equilibrium of 
Theorem 1.

Lemma 2. In the equilibrium with confounding dynamics of Theorem 1, consider the augmented 
information matrix �̃(L), where⎛

⎝ θit

yt

xit − yt

⎞
⎠ = �̃(L)

(
εt

vit

)
=

⎡
⎣ A(L) 1

Y(L) 0
X(L) − Y(L) V (L)

⎤
⎦(

εt

vit

)
. (26)

The 2-by-2 minors of �̃(L) all vanish at λ.

Proof. See Appendix A.2. �
The form of (19) is intuitive when contrasted with the full information counterpart. The stan-

dard Hansen-Sargent formula subtracts off the particular linear combination of future values of 
εt that minimize the agent’s forecast error. As described in Section 2, confounding dynamics 
implies that a particular linear combination of past values of εt are never revealed to the agent. 
In order to make a direct comparison to the full-information case transparent, set γy(L) = γx(L), 
ψx(L) = 1, ψy(L) = 0, φθ = 0 and ψθ(L) = −1. According to Theorem 1, the solution under 
confounding dynamics can be written as

yt =
∞∑

j=0

ζ j θt+j − A(ζ )

∞∑
j=1

ζ j εt+j − (
1 − τ(λ)

)
(1 − λ2)A(λ)

∞∑
j=0

λj εt−j . (27)

The first two components on the right-hand side of (27) give the standard (full-information) 
Hansen-Sargent formula. The third component—represented by the weighted sum∑∞

j=0 λj εt−j —arises due to confounding dynamics and is similar to the prediction formula of 
Section 2. Agents do not observe the linear combination of shocks weighted by λ. Conditioning 
down implies that this linear combination will (optimally) be subtracted from the Hansen-Sargent 
full-information equilibrium. The relevance of the unknown past depends on the imprecision of 
the private signal θit , measured by 1 − τ(λ); the imprecision stemming from confounding dy-
namics, measured by 1 − λ2; and the fixed point constant A(λ).

Equation (20) provides the condition for the existence of equilibrium (19). It is obtained by 
evaluating the right-hand side of (19) at λ and setting it equals to zero. By doing so, (20) is 
ensuring that once the conditioning down due to confounding dynamics is taken into account, 
the λ responsible for such conditioning down must indeed be a point in which the equilibrium 
function is non-invertible. Condition (20) takes an intuitive form from an informational point 
of view. Note first that the LHS, Y(λ)
̃(λ), corresponds to the moving average part of the full 
15
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information solution evaluated at λ (a complete derivation of the full-information counterpart is 
presented in the Appendix A.1). Suppose for a moment that the RHS of (20) is set to zero. If a 
|λ| ∈ (0, 1) satisfying the condition existed, it would mean that the equilibrium with confounding 
dynamics would take the same form as the full information equilibrium Y(L). However, equa-
tion (27) shows that in presence of confounding dynamics the unknown past must be subtracted 
from the full information equilibrium, which would make the full information solution Y(L)

inconsistent with confounding dynamics. The implication of this observation is that whenever 
the RHS of (20) is made small enough, an equilibrium with confounding dynamics may fail to 
exist. In particular, as the noise-to-signal ratio in private information σv/σε declines, the signal-
to-noise ratio, τ(λ), gets closer to one, and eventually leads to non-existence of an equilibrium 
with confounding dynamics.

We finally note that the autoregressive factor in (19), 1/(1 − λL), injects into the equilibrium 
dynamics of yt the waves of over- and under-reaction or the hump-shaped imupulse depicted in 
Fig. 1, which are the hallmark of signal extraction under confounding dynamics. In Section 5, in 
the context of a real business cycle model, we provide a description of how economic incentives 
can combine with the signal extraction under non-invertibility to deliver the fixed-point condition 
(20), and a hump-shaped response to shocks exclusively due to confounding dynamics.

5. Application: business cycle with confounding dynamics

In this section we apply our results to a model of business cycle fluctuations driven by pro-
ductivity shocks. The purpose of this section is to analytically demonstrate the confounding 
dynamics mechanism within a well established framework. To achieve this goal, we work within 
a linearized model reminiscent of the islands model of Lucas (1975). We motivate this section 
with two observations: First, note that this application allows us to demonstrate that the suffi-
cient conditions for confounding dynamics are non-empty. Second, a common criticism of many 
models that follow the Lucas tradition is that agents cannot see economy-wide prices: if they 
could, then they could infer fundamentals perfectly and there would not be any confusion in 
equilibrium. Our setup does not suffer from this criticism.9

The economy consists of a continuum of islands indexed by i ∈ [0,1]. Each island is inhab-
ited by an infinitely-lived representative household, and by a representative firm, also indexed by 
i. Household i supplies labor services exclusively to firm i in a decentralized competitive labor 
market or, equivalently, workers cannot move across islands. Households supply labor inelasti-
cally to firms, and the labor supply is normalized to 1. Households own capital in the economy, 
which is rented out to firms in a centralized spot market. Firms use capital and labor to produce 
output, also supplied in a centralized competitive spot market. Households derive utility from 
consuming the output good. Output is produced by firm i according to a Cobb-Douglas technol-
ogy with capital and labor inputs – with income shares α, and 1 −α respectively, and total factor 
of productivity that is firm-specific and denoted by eait , where

ait = at + vit .

The term at is common across all the islands, while vit is a productivity component that is specific 
to island i. In what follows, we consider a log-linearized version of the model with full capital 

9 We are not unique in this respect, see for instance Amador and Weill (2010).
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depreciation and constant elasticity of intertemporal substitution, denoted by η > 0.10 Household 
i sets consumption intertemporally according to the Euler equation

Eit

(
cit − cit+1 + ηrt+1

) = 0. (28)

The intertemporal budget constraint is

(1 − βα)cit + αβkit+1 = (1 − α)wit + αrt − αkit , (29)

where kit+1 is the capital stock that household i is carrying into period t + 1, wit is the wage 
rate, rt is the rental rate of capital, and β ∈ (0, 1) is the subjective discount factor. The island-
specific wage rate is given by, wit = 1

1−α
(ait − αrt ). Aggregate capital is defined as kt+1 ≡∫ 1

0 kit+1μ(i)di, and market clearing implies an interest rate

rt = at − (1 − α)kt . (30)

Using the household’s budget constraint at t and at t + 1 to get expressions for cit and cit+1, 
and leading (30) one period forward, one can substitute (28) into the Euler to obtain a second-
order difference equation for capital kit+1

αβEit

(
kit+2) + η(1 − αβ)Eit

(
rt+1

) −Eit

(
ait+1

) = α(1 + β)kit+1 − αkit − ait , (31)

which completely characterizes the equilibrium. As remarked in Section 3.3, the model maps 
into our general setting by specifying xit = kit+1, yt = rt , and θit = ait .

Finally, we assume that total factor productivity that is common across islands follows the 
AR(1) process

at = ρat−1 + εt , (32)

so that A(L) = 1
1−ρL

, and with ρ ∈ [0, 1]. Note that there are no moving average components 
in this process, and therefore it is always invertible. It cannot be the source of confounding 
dynamics. They must emerge naturally from interactions within the model.

FULL INFORMATION We first derive the full information (�it = vt
i ∨ εt ) solution for ag-

gregate capital and the interest rate. The full-information guess for island-specific capital is 
given by kit+1 = K(L)εt + V(L)vit . From (30), the interest rate is immediately determined by 
rt = R(L)εt and where

R(L) = A(L) − (1 − α)K(L)L. (33)

The characteristic polynomial associated with equation (31) can be determined as


(L) = αβ − (
η(1 − αβ)(1 − α) + (1 + β)α

)
L + αL2 = α(ζ − L)(β/ζ − L). (34)

Given that α (capital’s share of production) and β (subjective discount factor) are both less than 
one, (34) contains one root inside the unit circle (ζ ) and one outside (β/ζ ), and their product is 
always equal to β . Following the steps outlined in Section A.1, the full information equilibrium 
for capital can be derived as the AR(2) process

10 The fully specified model and the derivation of the log-linearization are reported in the Online Appendix
B.6.
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K(L) =
ζ
αβ

(1 + κ)

(1 − ρL)(1 − ζ
β
L)

, (35)

and the interest rate takes an ARMA(2, 1) form

R(L) = 1 − ζ
αβ

(1 + (1 − α)κ)L

(1 − ρL)(1 − ζ
β
L)

, (36)

where κ ≡ ρ(1−ζ )(αβ/ζ−1)
(1−ρζ )(1−α)

.
The standard assumptions in the RBC model imply that productivity affects the interest rate 

contemporaneously, while investment in capital affects the interest rate with a one period lag. The 
consequence of this timing assumption is that rt features a moving average component which 
we know, from our analysis, can have important informational consequences. Suppose that the 
moving average in rt was non-invertible. If agents were asked to extract the history of εt based 
solely on data from rt , they would face the signal extraction problem described in Section 2. 
In particular, they would not be able to recover the exact history of εt . In the full information 
equilibrium reported above, agents are assumed to directly observe εt in every period, and so the 
equilibrium dynamics are consistent with the information used to compute expectations even if 
rt itself is non-invertible. However, what if we modify the information available to the agents by 
removing the direct observation of the shocks? How would the equilibrium change? Theorem 1
can be readily applied to address these questions, to which we now turn.

CONFOUNDING DYNAMICS The first step in applying Theorem 1 is to specify the agents’ infor-
mation set. Because households participate in two competitive markets every period – the labor 
market and the rental market for capital – they observe the island-specific wage rate wit , and the 
rental rate rt . The observation of wit and rt implies that household i can always back out ait at 
time t through the expression for wit reported above. As a consequence, observing the prices of 
labor and capital is equivalent to the information set

�it = at
i ∨ rt . (37)

We also assume that households cannot observe the aggregate capital kt , so to avoid the full 
revelation of at , and thus vit , which would be implied by (30).11 Following Theorem 1, existence 
of confounding dynamics requires that the process for rt = R(L)εt , has the following property,

R(λ) = 0, (38)

for a λ ∈ (−1, 1). A direct application of Theorem 1 leads to the following corollary.

Corollary 1. Consider the Real Business Cycle model (30)-(32). Let the information sets be spec-
ified as in (37). There exists a Rational Expectations Equilibrium with Confounding Dynamics 
of the form, kt+1 = K(L)εt , and rt = R(L)εt , with

K(L) = K(L) − (
1 − τ(λ)

)
C(λ)

(1 − ζ
β
λ)(1 − λ2)

(1 − ζ
β
L)(1 − λL)

, (39)

and R(L) = A(L) − (1 − α)K(L)L, if there exists a λ ∈ (−1, 1), that solves

11 There are many other information structures that would preserve confounding dynamics in this setting and would be 
consistent with the general specification of Section 3.1.
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R(λ) = −(
1 − τ(λ)

)
(1 − α)C(λ)λ, (40)

where C(λ) ≡
(

1−β
1−ρλ

)(
(1−λβ)λ−τ(λ)(1−λ2)β

)+(1−τ(λ))(1−λ2)β((1−ρζ )κ/ρ−ζ )+(1−λβ)λκ/ρ

λα(λ−β/ζ )
(
(1−λβ)(λ−ζ )−(1−λ2)τ (λ)(β−ζ )

) . K(L) and 

R(L) are as in (35) and (36), τ(λ) ≡ σ 2
ε

σ 2
ε +(1−ρλ)2σ 2

v
, and R(L) has a zero inside the unit cir-

cle equal to λ.

While the functional forms of equations (39)–(40) have the same general structure as The-
orem 1 (and same interpretation), the context of the application allows us to gain additional 
insights into the existence and behavior of an equilibrium with confounding dynamics.12

Table 1 reports the endogenous values of λ computed solving (40); “none” indicates that there 
is no λ ∈ (−1, 1) that solves (40). In Panel 1, the elasticity of substitution, η, is held fixed at 1
– corresponding to log utility – and the private signal precision, σv/σε , is changed from very 
informative (column (a)) to very uninformative (column (c)). An equilibrium with confounding 
dynamics exists when the private signal is uninformative: column (c) with λ = 0.73. Intuitively, 
if the private signal is very informative, agents will rely strongly on their private information in 
forming their beliefs about aggregate productivity, which, in turn, will make the interest rate more 
informative. In Panel 2, σv/σε is held fixed at 2, and the elasticity of substitution is changed from 
a low level (0.5 in column (a)), to a high level (2 in column (c)). In this case, the equilibrium with 
confounding dynamics only exists when the elasticity of substitution is sufficiently low: column 
(a), with λ = 0.44. From the full information equilibrium (35) we see that a lower elasticity of 
substitution implies a more sluggish response of capital as agents are less willing to substitute 
consumption for investment.13 In the presence of incomplete information, a similar sluggish 
adjustment prevents capital, and thus the interest rate, to correctly reflect the underlying changes 
in fundamentals. As the elasticity of substitution is increased, the more reactive response of 
capital results in the interest rate dynamics fully revealing the fundamentals.

We conclude the analysis by using the case in column (c), in Panel 1 of Table 1 to study 
the qualitative effects of confounding dynamics on capital and the interest rate. Fig. 2 shows 
the response of capital, kt+1, and the interest rate, rt , to a persistent unitary positive shock to 
aggregate productivity at under full information (dashed lines) and confounding dynamics (plain 
lines). Under full information, capital increases at impact and steadily climbs towards a new 
persistent level (recall that ρ ≈ 1 in this example). The interest rate increases at impact because 
capital is fixed at first while productivity is higher. Subsequently, the interest rate steadily declines 
because of the increased capital accumulation which reduces the marginal product of capital.

In the equilibrium with confounding dynamics the impulse responses are markedly different. 
As shown by the solid lines in Fig. 2, the response of capital is amplified for every t and displays 
a hump-shaped pattern, with the peak reached in period 1 and a persistent slow decline towards 
the full information long-run level. The interest rate at impact is equal to the full-information 

12 Note that, as it is the case for Theorem 1, the corollary looks for an equilibrium functional form with exactly one 
root (λ) inside the unit circle. In our numerical analysis, it can happen that condition (40) is satisfied by more than one 
numerical value for λ. For each individual numerical value, we verify that the initial conjectured equilibrium functional 
form holds, so we confirm that we have identified a rational expectations equilibrium (i.e. we implement the fixed point 
check described in Step 3 of the sketch of the proof of Theorem 1). We have also verified that the qualitative properties 
of the equilibrium are the same across numerical values and the overall message of our results do not change.
13 To see this, note that (34) implies ∂ζ

> 0, which in turn implies ∂K(0)
> 0 for ρ ≈ 1.
∂η ∂η
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Table 1
Existence of Equilibrium with Confounding Dynamics.

Panel 1: η = 1 (a) (b) (c)

Noise-Signal Ratio, σv/σε 0.1 1 4

Confounding Dynamics, λ none none 0.73

Panel 2: σv/σε = 2 (a) (b) (c)

Elasticity of Substitution, η 0.5 1 2

Confounding Dynamics, λ 0.44 none none

Existence of Equilibrium with Confounding Dynamics for numerical values of the noise-to-signal ratio in ait , σv/σε , 
and the elasticity of intertemporal substitution, η. The rest of the parameters are set at β = 0.985, α = .33, ρ ≈ 1. The 
entry “none” indicates that there is no λ ∈ (−1, 1) that solves (40).

Impulse response of Capital, kt+1, and Interest Rate, rt , under Full Information (dash-line) and Con-
founding Dynamics (plain-line). The parameter values are η = 1, β = 0.985, α = 0.33, ρ ≈ 1, and 
σv/σe = 4. For the Confounding Dynamics equilibrium, λ = 0.73.

Fig. 2. Impulse Response of Capital and Interest Rate.

case because capital is fixed, but it drops in negative territory in the subsequent periods because 
of the larger response of capital.

The intuition as of why capital displays an amplified response under confounding dynamics 
can be found in how capital behaves to ensure that the interest rate is non-invertible at λ. When 
η = 1, and ρ ≈ 1, one can show that14

R(L) ≈ 1

(1 − αL)
, (41)

which means that the full information interest rate decays gradually towards zero after impact as 
capital gradually climbs towards a very persistent higher level. In the equilibrium with confound-
ing dynamics, a moving average component with root λ appears in the process for the interest 
rate, which requires the interest rate to overshoot into negative territory after impact, similarly 

14 To see this note that when η = 1, ζ/β = α, and κ = 0, so the expression immediately follows from (36) when 
one recognizes that the ratio (1 − L)(1 − ρL) cancels for ρ ≈ 1. Also note that this relationship only holds under full 
information.
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to Panel B in Fig. 1. For that to be the case, the interest rate must decline more than the full-
information case one period after impact, which, given the timing of the model, can happen only 
with a higher response of capital at impact. Using (41) together with (40) it is possible to show 
that the difference between the dynamic response of capital across the two equilibria is

K(L) −K(L) ≈ (1 − λ2)

(1 − α)λ(1 − αL)(1 − λL)
. (42)

The hump shape with peak at period 1 emerges because, α + λ > 1, and, α2 + λ2 + αλ < α + λ, 
in our numerical example. Intuitively, the persistence in the interest rate dynamics, measured by 
α, combines with the persistence due to signal extraction from the interest rate, measured by λ, 
and they initially reinforce each other before eventually declining.

The role of the informativeness of private signal, ait , measured by σv/σε , is also crucial in 
sustaining the amplified response and thus non-invertibility. Based just on their private signal, 
optimal signal extraction would instruct agents to be conservative in estimating the innovation 
to aggregate productivity, which would result in lower investment at the individual agent’s level 
compared to full information and thus aggregate under-reaction of investment. However, the be-
havior of the interest rate under confounding dynamics changes the average predicted innovation 
in at . If agents observe a large drop in the interest rate after impact, their signal extraction effort 
leads them to rationally infer that the aggregate productivity shock is larger than what their pri-
vate signal alone would suggest. In this sense, the interest rate dynamics, when used to extract 
information about the innovation in productivity, acts as a perceived positive aggregate innova-
tion in productivity. If the private signal is sufficiently uninformative, the perceived innovation 
remains consistent with rational expectations, and an equilibrium with confounding dynamics is 
established.

Our application starkly showcases the central insight coming from Theorem 1: allowing for 
the endogeneity of signals in a dynamic context opens the door to a set of equilibria that are 
usually overlooked when information is exogenously provided to the agents. Fig. 2 shows that 
equilibria with confounding dynamics can display a qualitative behavior of key aggregate vari-
ables that is interesting and promising for quantitative applications. The shape and size of the 
response is determined by the assumption that we look at equilibria with only one non-invertible 
root λ. However, richer non-invertible conditions – such as ones with multiple roots, conjugate 
pairs, etc. – would result in richer dynamics that would ensure a better fit of data (we explore a 
simple prediction example with multiple roots in Appendix B.4). Finally, in order to keep things 
analytically tractable and transparent, we have assumed away additional sources of frictions, 
thereby limiting the potential of the model to provide quantitatively significant results. However, 
we envision a richer environment with several types of frictions, such as financial frictions – 
which are likely to introduce stronger sensitivity of allocations to the interest rate, or exoge-
nous noisy signals, but where confounding dynamics remain a major determinant of equilibrium 
behavior.

6. Concluding comments

As we have shown, confounding dynamics injects persistence into impulse response func-
tions. These interesting dynamics are generated from a simple and optimal learning mechanism 
that can be easily applied to any dynamic setting. Future work will seek to better understand 
the empirical properties of confounding dynamics by incorporating them into real and nominal 
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business cycle models designed to be taken to data. Theoretical results of Section 5 and prelim-
inary empirical results show much promise. Future work will also seek to show an equivalence 
between the analytic function approach advocated here and the more familiar time-domain ap-
proach. Contrasting these approaches in a side-by-side fashion will help to highlight the benefits 
of the analytic function approach while demystifying certain aspects of it.

Appendix A. Proofs

A.1. Full information solution

The proof of Theorem 1 makes use of the full information solution of (10)-(7). We report the 
derivation of the full information solution here for completeness. We define as Full Information 
the case when every agent is endowed with perfect knowledge of the aggregate and her own 
idiosyncratic innovations history up to time t . Denoting the full information set by �̃it , the set is 
formally specified as

�̃it = vt
i ∨ εt . (A.1)

Here, and in the following analysis, we assume that agents know that the equilibrium relationship 
is given by (7)-(10). We begin by guessing that the solution takes the form, xit = X (L)εt +
V(L)vit , and yt = Y(L)εt , where X (L), V(L) and Y(L) are square-summable lag polynomial in 
non-negative powers of L. Under full information, direct application of the Wiener-Kolmogorov 
formula (see Appendix C) provides expressions for the relevant expectational terms,

Eit (xit+1) = [X (L) −X (0)]L−1εt + [V(L) − V(0)]L−1vit , (A.2)

Eit (yt+1) = [Y(L) −Y(0)]L−1εt , (A.3)

Eit (θt+1) = [A(L) − A(0)]L−1εt . (A.4)

The fixed point condition under full information can be found by substituting (A.2)-(A.4) into 
(7), so that

φx

[
X (L) −X (0)

]
L−1εt + φx

[
V(L) − V(0)

]
L−1vit + φy

[
Y(L) −Y(0)

]
L−1εt

+ φθ

[
A(L) − A(0)

]
L−1εt

= ψx(L)X (L)εt + ψx(L)V(L)vit + ψy(L)Y(L)εt + ψθ(L)A(L)εt + ψθ(L)vit .

(A.5)

This equation defines a fixed point condition for V(L) with all the terms that multiply vit . Col-
lecting terms that multiply vit , multiplying both sides by L and rearranging we get

V(L)
(
φx − ψx(L)L

) = φxV(0) + ψθ(L)L. (A.6)

Note that φx(L) ≡ φx − ψx(L)L, which, under Assumption 1, has exactly one zero inside the 
unit circle, which we term ζx . We thus pick V(0) to remove such zero by setting

φxV(0) + ψθ(ζx)ζx = 0. (A.7)

Solving for V(0), substituting back into (A.6) one finally obtains

V(L) = ψθ(L)L − ψθ(ζx)ζx
. (A.8)
φx(L)
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We now focus on the fixed point for Y(L) and X (L). As remarked in the text, the fixed point 
condition does not feature any components of V(L), so that one does not need to solve for the 
latter to obtain the former. To proceed with the solution there are two possibilities: solve for 
Y(L) and then recover X (L), or viceversa. In general, both routes are possible, but there are 
situations in which one direction is substantially easier than the other. This depends on whether 
γx(0) 
= 0 or γy(0) 
= 0. We report here both cases. We first consider the case that works whenever 
γx(0) 
= 0. We begin by manipulating condition (10) to get the following relationship between 
X (L) and Y(L),

X (L) = γ̃y(L)Y(L) + γ̃θ (L)A(L), (A.9)

where γ̃y(L) = − γy(L)

γx(L)
, and γ̃θ (L) = − γθ (L)

γx(L)
. Using (A.9) to substitute for terms featuring X (L)

in (A.5) one obtains

φx

[
γ̃y(L)Y(L) − γ̃y(0)Y(0)

]
L−1εt + φx

[
γ̃θ (L)A(L) − γ̃θ (0)A(0)

]
L−1εt

+ φx

[
V(L) − V(0)

]
L−1vit + φy

[
Y(L) −Y(0)

]
L−1εt + φθ

[
A(L) − A(0)

]
L−1εt

= ψx(L)γ̃y(L)Y(L)εt + ψx(L)γ̃θ (L)A(L)εt

+ ψx(L)V(L)vit + ψy(L)Y(L)εt + ψθ(L)A(L)εt + ψθ(L)vit . (A.10)

Taking all the terms that multiply εt in (A.10), multiplying by L both sides and rearranging, one 
gets

Y(L)
(L) = Y(0)
(
φxγ̃y(0) + φy

) − ξy(L), (A.11)

where

ξy(L) ≡ (
φx −ψx(L)L

)
γ̃θ (L)A(L)+(

φθ −ψθ(L)L
)
A(L)−(

φxγ̃θ (0)+φθ

)
A(0). (A.12)

Under Assumption 1, 
(L) has exactly one zero inside the unit circle, denoted by ζ , which 
means that we can choose Y(0) to remove such zero. We thus set

Y(0)
(
φxγ̃y(0) + φy

) − ξy(ζ ) = 0. (A.13)

Solving for Y(0), substituting into (A.11) and rearranging, one finally gets

Y(L) = ξy(ζ ) − ξy(L)


(L)
. (A.14)

The expression for X (L) can then be recovered using (A.9). Next we consider the case that works 
whenever γy(0) 
= 0. We begin by manipulating condition (10) to get the following relationship 
between X (L) and Y(L),

Y(L) = γ̂x(L)X (L) + γ̂θ (L)A(L), (A.15)

where γ̂x(L) = − γx(L)
γy(L)

, and γ̂θ (L) = − γθ (L)
γy(L)

. Using (A.15) to substitute for terms featuring Y(L)

in (A.5) one obtains

φx

[
X (L) −X (0)

]
L−1εt + φx

[
V(L) − V(0)

]
L−1vit

+ φy

[
γ̂x(L)X (L) − γ̂x(L)X (0)

]
L−1εt

+ φy

[
γ̂θ (L)A(L) − γ̂θ (L)A(0)

]
L−1εt + φθ

[
A(L) − A(0)

]
L−1εt

= ψx(L)X (L)εt + ψx(L)V(L)vit + ψy(L)γ̂x(L)X (L)εt

+ ψy(L)γ̂θ (L)A(L)εt + ψθ(L)A(L)εt + ψθ(L)vit . (A.16)
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Taking all the terms that multiply εt in (A.16), multiplying by L both sides and rearranging, one 
gets

X (L)
x(L) = X (0)
(
φx + φyγ̂y(0)

) − ξx(L), (A.17)

where


x(L) = φx + φyγ̂x(L) − ψx(L)L − ψy(L)γ̂x(L)L, (A.18)

and

ξx(L) ≡ (
φy −ψy(L)L

)
γ̂θ (L)A(L)+(

φθ −ψθ(L)L
)
A(L)−(

φyγ̂θ (0)+φθ

)
A(0). (A.19)

Analogously to Assumption 1, let us assume that 
x(L) has exactly one zero inside the unit 
circle, denoted by ζ̂ , which means that we can choose X (0) to remove such zero. We thus set

X (0)
(
φx + φyγ̂y(0)

) − ξx(ζ̂ ) = 0. (A.20)

Solving for X (0), substituting into (A.17) and rearranging, one finally gets

X (L) = ξx(ζ̂ ) − ξx(L)


x(L)
. (A.21)

The expression for Y(L) can then be recovered using (A.15).

A.2. Proof of Theorem 1

STEP 1: FACTORIZATION We operationalize the key requirement that Y(λ) = 0 for λ ∈ (−1, 1)

by specifying a guess of the form Y(L) = (L − λ)G(L), where G(L) has no zeros inside the 
unit circle. The first step in the proof is to then use the equilibrium guess to derive the canonical 
factorization for the information set, so that the Wiener-Kolmogorov formula (see Appendix C) 
be applied. The information set can be written as(

θit

yt

)
=

[
A(L)σε σv

(L − λ)G(L)σε 0

](
ε̃t

ṽit

)
, (A.22)

where εt = σεε̃t , vit = σvṽit , is a convenient normalization so that the variance-covariance matrix 
of the innovations vector is the identity matrix. It follows that

�(L) =
[

A(L)σε σv

(L − λ)G(L)σε 0

]
. (A.23)

The following Lemma shows the canonical factorization for �(L).

Lemma A3. The canonical factorization �∗(z)�∗(z−1)T of the variance-covariance matrix 
�(z)�(z−1)T , where �(z) is defined in (A.23), is given by

�∗(z) = 1√
A(λ)2σ 2

ε +σ 2
v

[
A(z)A(λ)σ 2

ε + σ 2
v σεσv

1−λz
z−λ

(
A(z) − A(λ)

)
A(λ)σ 2

ε (z − λ)G(z) σεσvG(z)(1 − λz)

]
. (A.24)

Proof. Using Rozanov (1967) procedure, �∗(z) is computed as

�∗(z) = �(z)WλBλ(z), (A.25)
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where

Wλ = 1√
A(λ)2σ 2

ε +σ 2
v

[
A(λ)σε −σv

σv A(λ)σε

]
, and Bλ(z) =

[
1 0
0 1−λz

z−λ

]
. (A.26)

The form of Wλ is obtained by application of Lemma C1 in Appendix C. Solving out the matrix 
multiplication after some algebra one obtains (A.24). �
STEP 2: EXPECTATIONS Equipped with the canonical factorization (A.24), we next derive 
the three expectational terms: Eit (xit+1), Eit (yt+1), and Eit (θit+1) (recall that Eit (θit+1) =
Eit (θt+1)). The second and third in the list are given by

Eit

(
θit+1
yt+1

)
= [

L−1�∗(L)
]
+�∗(L)−1

(
θit

yt

)
. (A.27)

Recalling that 
[
L−1�∗(L)

]
+ = [

�∗(L) − �∗(0)
]
L−1, and defining τ(λ) = A(λ)2σ 2

ε

A(λ)2σ 2
ε +σ 2

v
one gets

Eit (θt+1) = [
A(L) − A(0)

]
L−1εt − (

1 − τ(λ)
) 1−λ2

λ(1−λL)

[
A(λ) − A(0)

]
εt

− τ(λ) 1−λ2

λ(1−λL)

[
1 − A(0)

A(λ)

]
vit , (A.28)

Eit (yt+1) = [
(L − λ)G(L) + λG(0)

]
L−1εt − (

1 − τ(λ)
) 1−λ2

(1−λL)
G(0)εt

+ τ(λ) 1−λ2

(1−λL)
G(0)
A(λ)

vit . (A.29)

The term Eit (xit+1), is substantially more involved to derive, due to the fact that the correlation 
between xit+1 and θit exists not only because they both depend on εt , but they also both depend 
on vit . Formally, the application of the Wiener-Kolmogorov formula leads to

Eit (xit+1) =
[
L−1gxi ,(θi ,y)(L)

(
�∗(L−1)T

)−1
]
+�∗(L)−1

(
θit

yt

)
, (A.30)

where gxi,(θi ,y)(L) is the variance-covariance generating function between xi and the information 
set. Given the equilibrium guess, such function takes the form

gxi ,(θi ,y)(L) = [
X(L)A(L−1)σ 2

ε + V (L)σ 2
v X(L)(L−1 − λ)G(L−1)σ 2

ε

]
. (A.31)

It follows that

L−1gxi ,(θi ,y)(L)
(
�∗(L−1)T

)−1

=
[
L−1(V (L)σ 2

v + X(L)σ 2
ε A(λ)

)
σεσvL

−1 1−λL
L−λ

(
X(L) − V (L)A(λ)

)]
. (A.32)

The application of the annihilator operator requires to take the annihiland minus the principal 
part of its Laurent series expansion. All the terms have the usual principal part around L = 0. 
However, the term containing 1−λL

L−λ
also has a principal part around L = λ, it follows that[(

1−λL
L−λ

)
1
L

(
X(L) − V (L)A(λ)

)]
+

= L−1
[(

1−λL
L−λ

)(
X(L) − V (L)A(λ)

) + 1
λ

(
X(0) − V (0)A(λ)

)]
− 1−λ2

L−λ
1
λ

(
X(λ) − V (λ)A(λ)

)
. (A.33)

Finally one gets
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Eit (xit+1)

= L−1
[
X(L) − X(0)

]
εt − (

1 − τ(λ)
) 1−λ2

λ(1−λL)

[
X(λ) − X(0) − (

V (λ) − V (0)
)
A(λ)

]
εt

+ L−1
[
V (L) − V (0)

]
vit + τ(λ)

A(λ)
1−λ2

λ(1−λL)

[
X(λ) − X(0) − (

V (λ) − V (0)
)
A(λ)

]
vit .

(A.34)

STEP 3: FIXED POINT We begin by manipulating condition (10) to get the following relationship 
between X(L) and Y(L),

X(L) = γ̃y(L)Y (L) + γ̃θ (L)A(L), (A.35)

where γ̃y(L) = − γy(L)

γx(L)
, and γ̃θ (L) = − γθ (L)

γx(L)
. Next we substitute the equilibrium guess and ex-

pressions (A.28), (A.29), and (A.34) into model (7), which leads to the expression

φx

[
L−1

[
X(L) − X(0)

]
εt − (

1 − τ(λ)
) 1−λ2

λ(1−λL)

[
X(λ) − X(0) − (

V (λ) − V (0)
)
A(λ)

]
εt

+ L−1
[
V (L) − V (0)

]
vit + τ(λ)

A(λ)
1−λ2

λ(1−λL)

[
X(λ) − X(0) − (

V (λ) − V (0)
)
A(λ)

]
vit

]

+ φy

[[
(L − λ)G(L) + λG(0)

]
L−1εt − (

1 − τ(λ)
) 1−λ2

(1−λL)
G(0)εt + τ(λ) 1−λ2

(1−λL)
G(0)
A(λ)

vit

]
+ φθ

[[
A(L) − A(0)

]
L−1εt − (

1 − τ(λ)
) 1−λ2

λ(1−λL)

[
A(λ) − A(0)

]
εt

− τ(λ) 1−λ2

λ(1−λL)

[
1 − A(0)

A(λ)

]
vit

]
= ψx(L)

(
X(L)εt + V (L)vit

) + ψy(L)(L − λ)G(L)εt + ψθ(L)A(L)εt + ψθ(L)vit .

(A.36)

As one would expect, both on the left and right hand sides there are lag polynomials that mul-
tiply εt and vit . Because the two stochastic processes are uncorrelated, the equality must hold 
independently for the terms that multiply εt for those that multiply vit . Taking into account re-
lationship (A.35), equation (A.36) thus defines two fixed points: one for (L − λ)G(L) and one 
for V (L). Differently from the full information case, the fixed point for the aggregate yt (that 
defined by the terms multiplying εt ) also contains elements of the function V (L), more precisely 
the constant V (0) − V (λ). Therefore, in order to solve for (L − λ)G(L), we need first to solve 
for V (L). Taking the fixed point condition for the terms that multiply vit , multiplying both sides 
by L and rearranging one obtains

V (L)φx(L) =φxV (0) − φx
τ(λ)
A(λ)

1−λ2

λ(1−λL)

[
X(λ) − X(0) − (

V (λ) − V (0)
)
A(λ)

]
L

− τ(λ)
A(λ)

1−λ2

λ(1−λL)

[
φyG(0) + φθ

(
A(λ) − A(0)

)]
L + ψθ(L)L, (A.37)

where φx(L) ≡ φx − ψx(L)L. Similarly, the fixed point for (L − λ)G(L) is

(L − λ)G(L)
(L) = − φxγ̃y(0)λG(0) − φx

(
γ̃θ (L)A(L) − γ̃θ (0)A(0)

)
+ φx

(
1 − τ(λ)

) 1−λ2

λ(1−λL)

[
X(λ) − X(0) − (

V (λ) − V (0)
)
A(λ)

]
L

+ φy

[
λ − (

1 − τ(λ)
) 1−λ2

(1−λL)
L

]
G(0) − φθ

[[
A(L) − A(0)

]
− (

1 − τ(λ)
) 1−λ2

λ(1−λL)

[
A(λ) − A(0)

]
L

]
+ ψx(L)γ̃θ (L)A(L)L + ψθ(L)A(L)L, (A.38)
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where we have used (A.35) to substitute for, X(L) − X(0), and, X(L), and, 
(L) ≡ φx(L) +
φy − ψy(L)L. The next Lemma will prove very useful.

Lemma A4. V (λ) = γ̃θ (λ).

Proof. Evaluate (A.37) at λ and rearrange to obtain

V (λ)ψx(λ)λ = − φx
τ(λ)
A(λ)

[X(λ) − X(0)] − φx

(
1 − τ(λ)

)(
V (λ) − V (0)

)
− τ(λ)

A(λ)

[
φyG(0)λ + φθ

(
A(λ) − A(0)

)] + ψθ(λ)λ. (A.39)

Next, evaluate (A.38) at λ and rearrange to obtain

0 = − τ(λ)φx

(
X(λ) − X(0)

) + −φx

(
1 − τ(λ)

)(
V (λ) − V (0)

)
A(λ) − φyτ(λ)G(0)λ

− φθ

(
A(λ) − A(0)

)
τ(λ) + ψx(λ)γ̃θ (λ)A(λ)λ + ψθ(λ)A(λ)λ. (A.40)

Clearly, for (A.39) and (A.40) to hold, assuming A(λ) 
= 0, ψx(λ) 
= 0 and λ 
= 0, it must be that 
V (λ) = γ̃θ (λ). �
We can now use Lemma A4 to substitute for V (λ) in (A.37) and (A.38). It follows that to solve 
for (L −λ)G(L) we just need an expression for V (0), to which we now turn. From Assumption 1, 
we know that there is a root ζV that needs to be removed for V (L) to be stationary. We achieve 
this by choosing the appropriate constant V (0) so that the numerator on the right hand side of 
(A.37) vanishes when evaluated at ζV ,

φxV (0) − φx
τ(λ)
A(λ)

1−λ2

λ(1−λζV )

[
X(λ) − X(0) − (

γ̃θ (λ) − V (0)
)
A(λ)

]
ζV

− τ(λ)
A(λ)

1−λ2

λ(1−λζV )

[
φyG(0) + φθ

(
A(λ) − A(0)

)]
ζV + ψθ(ζV )ζV = 0 (A.41)

Using (A.35) so substitute for X(λ) − X(0), and rearranging one obtain the expression

φxV (0)A(λ) = m(λ)
(
φxγ̃y(0) + φy

)
λG(0) + n(λ), (A.42)

where

m(λ) ≡ τ(λ)(1 − λ2)ζV

(1 − λζV )λ − τ(λ)(1 − λ2)ζV

, (A.43)

and

n(λ) ≡ φθτ(λ)(1 − λ2)
(
A(λ) − A(0)

)
ζV − φxτ(λ)(1 − λ2)γ̃θ (0)A(0)ζV − ψθ(ζV )ζV λA(λ)

(1 − λζV )λ − τ(λ)(1 − λ2)ζV

.

(A.44)

Next we used (A.42) in (A.38), and we also substitute X(λ) − X(0) using (A.35) to get

(L − λ)G(L) = −λG(0)
(
φxγ̃y(0) + φy

)
H(L) + J (L)


(L)(1 − λL)λ
, (A.45)

where

H(L) = λ(1 − λL) − (
1 − τ(λ)

)
(1 − λ2)(1 + m(λ))L, (A.46)

and
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J (L) = (
1 − τ(λ)

)
(1 − λ2)

[
n(λ) − φxγ̃θ (0)A(0) + φθ

(
A(λ) − A(0)

)]
L

+ A(0)
(
φxγ̃y(0) + φy

)
λ(1 − λL)

− [(
φx − ψx(L)L

)
γ̃θ (L) + φθ − ψθ(L)L

]
A(L)λ(1 − λL). (A.47)

Under Assumption 1, 
(L) has a zero inside the unit circle at ζ , which means that we need to 
choose the constant G(0) so to cancel it. This is achieved by setting

−λG(0)
(
φxγ̃y(0) + φy

)
H(ζ) + J (ζ ) = 0. (A.48)

Solving for G(0) and substituting back into (A.45) one gets

(L − λ)G(L) = J (L)H(ζ ) − J (ζ )H(L)


(L)(1 − λL)λ
. (A.49)

Next, recall that we defined

ξy(L) ≡ A(0)
(
φxγ̃y(0) + φy

) − [(
φx − ψx(L)L

)
γ̃θ (L) + φθ − ψθ(L)L

]
A(L), (A.50)

and letting

ξ̃ ≡ n(λ) − φxγ̃θ (0)A(0) + φθ

(
A(λ) − A(0)

)
, (A.51)

one can show that (A.49) can be written as

(L−λ)G(L) = ξy(ζ ) − ξy(L)


(L)
− (

1 − τ(λ)
)
(1 −λ2)(ζ −L)

ξ̃ − (1 + m(λ)ξy(ζ )

H(ζ )
(L)(1 − λL)
. (A.52)

Using the factorization 
(L) = (ζ − L)
̃(L), and defining

A(λ) ≡ ξ̃ − (
1 + m(λ)

)
ξy(ζ )

H(ζ )
, (A.53)

expression (19) follows. Finally, for the solution to be consistent with the information set that we 
have used to derive it, it must be that the polynomial in (19) vanishes at L = λ, which corresponds 
to condition (20) in the Theorem.

The last step of the proof consists in making sure that when the equilibrium coefficients are 
evaluated using the λ that solves (20), there are no other points at which Y(L) vanishes inside 
the unit circle. More precisely, it has to be that there is no ξ 
= λ that solves

Y(ξ)
̃(ξ) = (1 − τ(λ))(1 − λ2)
A(λ)

1 − λξ
, (A.54)

such that |ξ | ∈ (−1, 1). If this was not the case, then the information conveyed by yt in equilib-
rium would be inconsistent with the information used to derive the expectations that we use to 
determine the fixed point. More precisely, the factorization of �(L) would be incorrect, as �∗(L)

in (A.24) would still be non-invertible. To see this, suppose that λ is a solution to (20), while ξ is 
a solution to (A.54), and they are both inside the unit circle. Then, the equilibrium function must 
have the form G̃(L)(L −λ)(L − ξ), but the factorization above only removes the zero associated 
with λ. It follows that

�∗(L) = 1√
A(λ)2σ 2

ε +σ 2
v

[
A(L)A(λ)σ 2

ε + σ 2
v σεσv

1−λL
L−λ

(
A(L) − A(λ)

)
A(λ)σ 2

ε (L − λ)(L − ξ)G̃(L) σεσvG̃(L)(L − ξ)(1 − λL)

]
,

(A.55)
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whose determinant still vanishes at L = ξ , so that �∗(L) is not the appropriate factorization. In 
this case one can modify the initial guess and consider N > 1 roots inside the unit circle, looking 
then for a condition like (20) to deliver exactly N solutions. We restrict our attention to N = 1
for simplicity and because the full description of the space of REE with confounding dynamics 
is beyond the scope of this paper, but we hope it is clear that our methods extend to the more 
general case.

STEP 4: NO INFORMATION FROM THE MODEL The last thing to check to complete the proof is 
to ensure that there is no information that is transmitted by a clever manipulation of the model 
conditions – which are part of the information set of the agents – combined with the knowledge of 
the history of θit and yt . For instance, suppose that the market clearing condition (10) is specified 
so that 

∫ 1
0 xitμ(i)di = yt , which means that yt is the aggregate of xit , then this would imply 

X(L) = Y(L), which would result in xit − yt = V (L)vit . Because rational agents know all this, 
they know that the difference xit − yt is just a linear combination of the individual innovations 
vit . It follows that they could, in principle, back out the realizations of vit ’s by inverting V (L). 
More generally, the link between X(L) and Y(L) due to (10) can be used by rational agents 
to obtain additional information on the underlying innovations. For this not to happen, if one 
augments the information set of the agents by xit − yt , the information matrix must still be non-
invertible at λ. The following Lemma shows that this is indeed the case for the equilibrium of 
Theorem 1.

Lemma A5. In the equilibrium with confounding dynamics of Theorem 1, consider the aug-
mented information matrix �̃(L), where⎛

⎝ θit

yt

xit − yt

⎞
⎠ = �̃(L)

(
εt

vit

)
=

⎡
⎣ A(L) 1

Y(L) 0
X(L) − Y(L) V (L)

⎤
⎦(

εt

vit

)
. (A.56)

The 2-by-2 minors of �̃(L) all vanish at λ.

Proof. Matrix �̃(L) has three minors, whose determinants are, respectively, Y(L), Y(L)V (L), 
and, A(L)V (L) −(X(L) −Y(L)). The first two minors clearly vanish at λ since, by construction, 
Y(λ) = 0. For the third minor, use (A.35) to write

A(L)V (L) − (X(L) − Y(L)) = A(L)V (L) − γ̃y(L)Y (L) − γ̃θ (L)A(L) + Y(L). (A.57)

We thus need to show that

A(λ)V (λ) = γ̃θ (λ)A(λ), (A.58)

but this follows immediately from Lemma A4. �
A.3. Derivation of full information solution of RBC model

In terms of the notation we used in Appendix A.1, Y(L) would correspond to R(L) in the 
application of Section 5, and X (L) to K(L). We first note that here γx(L) = (1 − α)L, which 
means γx(0) = 0, we are thus forced to take the alternative route described in Appendix A.1
and solve first for K(L) and leave the solution to R(L) as a straightforward corollary. Un-
der full information we know that Eit (kit+2) =

[
K(L) − K(0)

]
L−1εt + [

V(L) − V(0)
]
L−1vit , 

Eit (kt+1) = kt+1 = K(L)εt , and Eit (ait+1) = Eit (at+1) =
[
A(L) − A(0)

]
L−1εt . Substituting 
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(30) into (31), using the above expressions for the expectations, aggregating over agents, multi-
plying both sides by L, and rearranging, one obtains the fixed point condition

K(L) = αβK(0) + (
1 − η(1 − αβ) − L

)
A(L) − A(0)

α(ζ − L)(β/ζ − L)
. (A.59)

To ensure stationarity we choose K(0) = 1
αβ

(
A(0) − (

1 − η(1 − αβ) − ζ
)
A(ζ )

)
. Next substitute 

this expression in (A.59), and specify A(L) = 1
1−ρL

. By construction the denominator polyno-
mial contains the factor (ζ −L), which can be easily isolated and simplified with the same factor 
at the denominator, so to finally obtain

K(L) =
ζ
αβ

(
1−(1−η(1−αβ))ρ

1−ρζ

)
(1 − ρL)(1 − ζ

β
L)

. (A.60)

Evaluating the characteristic polynomial (34) at 1 one can show that, α(ζ − 1)(β/ζ − 1)/(1 −
α) = η(1 − αβ). Adding, ζ − 1, on both sides and rearranging one can show that, α(1 −
ζ )(αβ/ζ − 1)/(1 −α) = η(1 −αβ) − 1 + ζ . Now take the term 1−(1−η(1−αβ))ρ

1−ρζ
, add and subtract 

ρζ at the numerator, to obtain

K(L) =
ζ
αβ

(1 + κ)

(1 − ρL)(1 − ζ
β
L)

, (A.61)

where κ ≡ ρ(1−ζ )(αβ/ζ−1)
(1−ρζ )(1−α)

. It can be showed that κ = 0 for η = 1, which corresponds to the case 
of logarithmic preferences, and κ > 0 (resp. < 0) when η < 1 (resp. > 1). The expression for 
R(L) can be obtained using the relationship, R(L) = A(L) − (1 − α)K(L)L.

A.4. Proof of Corollary 1

The proof of the corollary is a straightforward application of the following lemma.

Lemma A6. Consider the Real Business Cycle model (30)-(31). Let the information sets be spec-
ified as in (37). There exists a Rational Expectations Equilibrium with Confounding Dynamics 
of the form, kt+1 = K(L)εt , and rt = R(L)εt , with

K(L) = K(L) − (
1 − τ(λ)

)
(1 − λ2)

Ak(λ)

(1 − λL)(ζ̃ − L)
, (A.62)

and, R(L) = A(L) − (1 − α)K(L)L, if there exists a λ ∈ (−1, 1), that solves

R(λ)(λ − ζ̃ ) = (1 − α)
(
1 − τ(λ)

)
Ak(λ)λ, (A.63)

where K(L) and R(L) are the full information solutions, τ(λ) ≡ A(λ)2σ 2
ε

A(λ)2σ 2
ε +σ 2

v
, Ak(λ) is a function 

of λ that depends only on exogenous parameters, and R(L) has a zero inside the unit circle equal 
to λ.

Proof. The proof follows the same steps as that of Theorem 1, with the difference that we solve 
for X(L) first – K(L) in the application. Recall that

φx = αβ, φy = 1−αβ, φθ = 1, ψx(L) = α(1+β)−αL, ψy(L) = 0, ψθ (L) = −1,
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and

γx(L) = (1 − α)L, γy(L) = 1, γθ (L) = −1.

Note that, although the notation adopted in the model has the two variables having different time 
subscripts, rt and kt+1, they are both pre-determined at time t , and so they are both functions 
of possibly the infinite history of εt up to time t . Since we are looking for an equilibrium with 
confounding dynamics, we operationalize the condition R(λ) = 0 by conjecturing

R(L) = (L − λ)G(L), (A.64)

where G(L) has no zeros inside the unit circle. Because in equilibrium R(L) = A(L) − (1 −
α)K(L)L, the conjecture immediately implies

A(λ) = (1 − α)K(λ)λ, (A.65)

a relationship that will be useful in what follows. One important remark on (A.65) is that it 
implies λ 
= 0. In fact, evaluating the expression at λ = 0, provided that K(0) is well defined, 
which must be the case in the solution we want to characterize, gives A(0) = 0, which never holds 
by assumption. Hence, the statement of the Proposition requires |λ| ∈ (0, 1). The information set 
takes the form of (A.22), where xit = ait and yt = rt , so that Eit (at+1) and Eit (rt+1) are provided 
by (A.28) and (A.29), respectively. For the term Eit

(
kit+2

)
things require some extra steps. We 

work under the conjecture that

kit+1 = K(L)εt + V (L)vit . (A.66)

Next, we evaluate the variance-covariance generating function between the information set and 
kit+1, which is

gki ,(ai ,r)(z) = [
K(z)A(z−1)σ 2

ε + V (z)σ 2
v K(z)(z−1 − λ)G(z−1)σ 2

ε

]
. (A.67)

We then use this expression, together with the canonical factorization �∗(z) in (A.24) in the 
Wiener-Kolmogorov formula (C.31), and following steps similar to (A.32) and (A.33) to finally 
get

Eit (kit+2) = L−1
[
K(L) − K(0)

]
εt − (

1 − τ(λ)
) 1−λ2

λ(1−λL)

[
K(0) − K(λ)

− (
V (0) − V (λ)

)
A(λ)

]
εt

+ L−1
[
V (L) − V (0)

]
vit − τ(λ) 1−λ2

λ(1−λL)

[
K(0)−K(λ)

A(λ)
+ (

V (0) − V (λ)
)]

vit .

(A.68)

We can now use the expressions for the expectational terms to obtain a fixed point condition 
similar to (A.36),

α(1 + β)K(L)εt + α(1 + β)V (L)vit

= αβL−1
[
K(L) − K(0)

]
εt + αβL−1

[
V (L) − V (0)

]
vit

− αβ
(
1 − τ(λ)

) 1−λ2

λ(1−λL)

[
K(λ) − K(0) − (

V (λ) − V (0)
)
A(λ)

]
εt

+ αβ
τ(λ)
A(λ)

1−λ2

λ(1−λL)

[
K(λ) − K(0) − (

V (λ) − V (0)
)
A(λ)

]
vit

+ αK(L)Lεt + αV (L)Lvit + A(L)εt + vit − [
A(L) − A(0)

]
L−1εt
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+ (
1 − τ(λ)

) 1−λ2

λ(1−λL)

[
A(λ) − A(0)

]
εt

− τ(λ)
A(λ)

1−λ2

λ(1−λL)

[
A(λ) − A(0)

]
vit + (1 − αβ)

[
A(L) − (1 − α)K(L)L − A(0)

]
L−1εt

+ (1 − αβ)
(
1 − τ(λ)

) 1−λ2

λ(1−λL)
A(0)εt − (1 − αβ)

τ(λ)
A(λ)

1−λ2

λ(1−λL)
A(0)vit , (A.69)

where we have used (L − λ)G(L) = A(L) − (1 − α)K(L)L, and thus −λG(0) = A(0), to sub-
stitute for terms related to G(L). The fixed point equation contains only terms related to the 
endogenous polynomials V (L) and K(L), and one can proceed to solve for the fixed point as in 
the proof of Theorem 1. In particular, using the same steps as in Lemma A4, one can show that 
A(λ)V (λ) = K(λ), and, in addition, we know that (A.65) holds, so we can set K(λ) = A(λ)

λ(1−α)
. 

The uniqueness of a stationary solution under Assumption 1 and condition (34), is once again 
obtained by the appropriate choice of V (0) and K(0). In the end, the expression for Ak(λ), 
analogue to the constant A(λ) in Theorem 1, can be simplified to

Ak(λ) =
[
(1−λβ)λ−τ(λ)(1−λ2)β

]
(1−β)A(λ)+β

(
η(1−βα)−1

)(
1−τ(λ)

)
(1−λ2)A(0)+(1−λβ)λ

(
η(1−βα)−1+ζ

)
A(ζ )

λα(1+β)
[
(1−λβ)(ζ−λ)−τ(λ)(1−λ2)(ζ−β)

]
(A.70)

The condition for the existence of one |λ| ∈ (0, 1) follows from using K(L) to write R(L) and 
then imposing R(λ) = 0. The same argument that we have used in the proof of Theorem 1 to 
argue that when the equilibrium coefficients are evaluated using the λ that solves R(λ) = 0, there 
must be no other points at which R(L) vanishes inside the unit circle, applies here as well. This 
completes the proof. �
The proof of Corollary 1 consists in plugging A(L) = 1

1−ρL
into the above expressions and 

rearranging terms when possible.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2021 .105251.

References

Acharya, S., Benhabib, J., Huo, Z., 2017. The Anatomy of Sentiment-Driven Fluctuations. Working Paper 23136. Na-
tional Bureau of Economic Research.

Adam, K., 2007. Optimal monetary policy with imperfect common knowledge. J. Monet. Econ. 54 (2), 267–301.
Allen, F., Morris, S., Shin, H., 2006. Beauty contests and iterated expectations in asset markets. Rev. Financ. Stud. 19 

(3), 719–752.
Amador, M., Weill, P.-O., 2010. Learning from prices: public communication and welfare. J. Polit. Econ. 118 (5), 

866–907.
Angeletos, G.-M., La’O, J., 2009. Noisy business cycles. NBER Macroecon. Annu. 24.
Angeletos, G.-M., La’O, J., 2013. Sentiments. Econometrica 81 (2), 739–780.
Angeletos, G.-M., Lian, C., 2016. Incomplete information in macroeconomics: accommodating frictions in coordination. 

Handb. Macroecon. 2, 1065–1240.
Angeletos, G.-M., Pavan, A., 2007. Efficient use of information and social value of information. Econometrica 75 (4).
Bacchetta, P., van Wincoop, E., 2006. Can information heterogeneity explain the exchange rate puzzle? Am. Econ. 

Rev. 96 (3), 552–576.
Benhabib, J., Wang, P., Wen, Y., 2015. Sentiments and aggregate demand fluctuations. Econometrica 83 (2), 549–585.
Bernhardt, D., Seiler, P., Taub, B., 2010. Speculative dynamics. Econ. Theory 44, 1–52.
32

https://doi.org/10.1016/j.jet.2021.105251
https://doi.org/10.1016/j.jet.2021.105251
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibADDC3BA1BFB4A2B7EE9EA423007C16E3s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibADDC3BA1BFB4A2B7EE9EA423007C16E3s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibB22DD8D81EA155461BE20A8E4A1DD427s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib94501F3620F1ABD720040A466722CC17s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib94501F3620F1ABD720040A466722CC17s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibA796AB7FC4EDB94D2BD6447F1DF02182s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibA796AB7FC4EDB94D2BD6447F1DF02182s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib2ECE6559128C135A86CBCDA33CF4E964s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib816CEAB3EBD96C5543CCB826A78FA498s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib058BD9F847E2C355D457B529FD0E9668s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib058BD9F847E2C355D457B529FD0E9668s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibF561CC9341F7222FFB6BAB912142027Es1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib30D864E5F38D06D680989A2F40C1C28Cs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib30D864E5F38D06D680989A2F40C1C28Cs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibABC4A097BDFFA01B90AA0DEE51B61B3Cs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib577982E9E79C13375B94AA39F7D6C147s1


G. Rondina and T.B. Walker Journal of Economic Theory 196 (2021) 105251
Blanchard, O.J., Kahn, C.M., 1980. The solution of linear difference models under rational expectations. Econometrica 48 
(5), 1305–1312.

Cagan, P.D., 1956. The monetary dynamics of hyperinflation. In: Friedman, M. (Ed.), Studies in the Quantity Theory of 
Money. University of Chicago Press.

Canova, F., Sahneh, M.H., 2017. Are small-scale SVARs useful for business cycle analysis? Revisiting nonfundamental-
ness. J. Eur. Econ. Assoc. 16 (4), 1069–1093.

Cogley, T., Nason, J.M., 1995. Output dynamics in real-business-cycle models. Am. Econ. Rev. 85 (3), 492–511.
Coibion, O., Gorodnichenko, Y., 2012. What can survey forecasts tell us about information rigidities? J. Polit. Econ. 120 

(1), 116–159.
Futia, C.A., 1981. Rational expectations in stationary linear models. Econometrica 49 (1), 171–192.
Graham, L., Wright, S., 2010. Information, heterogeneity and market incompleteness. J. Monet. Econ. 57 (2), 164–174.
Gregoir, S., Weill, P., 2007. Restricted perception equilibria and rational expectation equilibrium. J. Econ. Dyn. Con-

trol 31 (1), 81–109.
Hassan, T.A., Mertens, T.M., 2011. The Social Cost of Near-Rational Investment. NBER Working Paper 17027.
Hellwig, C., 2006. Monetary business cycle models: imperfect information. In: New Palgrave Dictionary of Economics.
Hellwig, C., Venkateswaran, V., 2009. Setting the right prices for the wrong reasons. J. Monet. Econ. 56, S57–S77.
Hoffman, K., 1962. Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, New Jersey.
Huo, Z., Takayama, N., 2016. Rational Expectations Models with Higher Order Beliefs. Working Paper.
Kasa, K., 2000. Forecasting the forecasts of others in the frequency domain. Rev. Econ. Dyn. 3, 726–756.
Kasa, K., Walker, T.B., Whiteman, C.H., 2014. Heterogenous beliefs and tests of present value models. Rev. Econ. 

Stud. 81 (3), 1137–1163.
Keynes, J.M., 1936. The General Theory of Employment, Interest and Money. Macmillan, London, U.K.
King, R., 1982. Monetary policy and the information content of prices. J. Polit. Econ. 90 (2), 247–279.
Klein, P., 2000. Using the generalized Schur form to solve a multivariate linear rational expectations model. J. Econ. 

Dyn. Control 24 (10), 1405–1423.
Klenow, P.J., Willis, J.L., 2007. Sticky information and sticky prices. J. Monet. Econ. 54, 79–99.
Lorenzoni, G., 2009. A theory of demand shocks. Am. Econ. Rev. 99 (5), 2050–2084.
Lucas Jr., R.E., 1972. Expectations and the neutrality of money. J. Econ. Theory 4, 103–124.
Lucas Jr., R.E., 1975. An equilibrium model of the business cycle. J. Polit. Econ. 83, 1113–1144.
Mankiw, N., Reis, R., 2002. Sticky information versus sticky prices: a proposal to replace the new Keynesian Phillips 

curve. Q. J. Econ. 117 (4), 1295–1328.
Melosi, L., 2017. Signaling effects of monetary policy. Rev. Econ. Stud. 84 (2), 853–884.
Nimark, K., 2010. Dynamic higher order expectations. Working paper. Universitat Pompeu Fabra.
Pearlman, J.G., Sargent, T.J., 2005. Knowing the forecasts of others. Rev. Econ. Dyn. 8 (2), 480–497.
Pigou, A.C., 1929. Industrial Fluctuations, second edn. Macmillan, London.
Radner, R., 1979. Rational expectations equilibrium: generic existence and the information revealed by prices. Econo-

metrica 47 (3), 655–678.
Rondina, G., 2009. Incomplete Information and Informative Pricing. Working Paper. UCSD.
Rozanov, Y.A., 1967. Stationary Random Processes. Holden-Day, San Francisco.
Sims, C.A., 2002. Solving linear rational expectations models. Comput. Econ. 20, 1–20.
Singleton, K.J., 1987. Asset prices in a time series model with disparately informed, competitive traders. In: Barnett, W., 

Singleton, K. (Eds.), New Approaches to Monetary Economics. Cambridge University Press, Cambridge.
Taub, B., 1989. Aggregate fluctuations as an information transmission mechanism. J. Econ. Dyn. Control 13 (1), 113–150.
Townsend, R.M., 1983a. Equilibrium theory with learning and disparate expectations: some issues and methods. In: 

Phelps, E.S., Frydman, R. (Eds.), Individual Forecasting and Aggregate Outcomes: ‘Rational Expectations’ Exam-
ined. Cambridge University Press, pp. 169–202.

Townsend, R.M., 1983b. Forecasting the forecasts of others. J. Polit. Econ. 91 (4), 546–588.
Uhlig, H., 1999. Analyzing non linear dynamics stochastic models. In: Marimon, A.S.R. (Ed.), Computational Methods 

for the Study of Dynamic Economies. Oxford University Press, Oxford, pp. 30–61.
Walker, T.B., 2007. How equilibrium prices reveal information in time series models with disparately informed, compet-

itive traders. J. Econ. Theory 137 (1), 512–537.
Whiteman, C., 1983. Linear Rational Expectations Models: A User’s Guide. University of Minnesota Press, Minneapolis.
Woodford, M., 2003. Imperfect common knowledge and the effects of monetary policy. In: Aghion, P., Frydman, R., 

Stiglitz, J., Woodford, M. (Eds.), Knowledge, Information, and Expectations in Modern Macroeconomics. Princeton 
University Press, Princeton, N.J.
33

http://refhub.elsevier.com/S0022-0531(21)00068-5/bib91D924B096D96E0E2CFD9F50F0888F36s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib91D924B096D96E0E2CFD9F50F0888F36s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib3A04EE89DCE4575D82EC1877340622A4s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib3A04EE89DCE4575D82EC1877340622A4s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibA6601CA5F7429C65A111DB02D96ADFD7s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibA6601CA5F7429C65A111DB02D96ADFD7s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib4E1458530D5D8413FB814D08F774C730s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib096258B690F926FF3E1946E4BB7EDEE4s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib096258B690F926FF3E1946E4BB7EDEE4s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib2CBC1F1DB985B57D0513BA4211E1EA4Es1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibD3F32DF756C56E199F2BA34685FDF6E5s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib0198A3EE996F6CFF731DEC471DD93A54s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib0198A3EE996F6CFF731DEC471DD93A54s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibBE26BA952C9C02A22A37609AB71A2DDDs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib194B852B2D45DD6BFCFFF91C03F0E74Bs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibBF497D767285CD96C18C84572EA296D4s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib674B7D32EEE77C989921DA5B6B089428s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibA03C64673FFC73346C40820252563C95s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib308B53A7C17022C3D792C0F24300E5EFs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib27A72DD9EB1CEC52AF951B8770BB1DC2s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib27A72DD9EB1CEC52AF951B8770BB1DC2s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib16F3BBF6413C6908F753907ACBD994EBs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibDDFCBA8DE904CB7AC611FED4656AE4FCs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibE7FFB64DFB12C6CB84B93FD9C1194DA9s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibE7FFB64DFB12C6CB84B93FD9C1194DA9s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibF2A4E477DA1DB20DC4D0384875879835s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib0F1852C7262DB56F83B47E660F2872D6s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibCED95EE4D65E0E2227F5320A4B1A4B3Fs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib8DB033FACB5BD8EBA9D1FAA1F767A4D7s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib31F56608A65DA4DEB23FC6A2FADDB8C7s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib31F56608A65DA4DEB23FC6A2FADDB8C7s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib0DFBEC2324F8A186F0A5A4DF211DA911s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib01CDE9504F5D6320AF80DD8300D16C83s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibE36744B159A7B30B6B25760FFF0EB1ECs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib14E26CDBB1D2AECD91A5BDA4F464654Es1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib703EBCCC4348675D610EFAC6ACBB472Cs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib703EBCCC4348675D610EFAC6ACBB472Cs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib48928CC7704EA5E742FFAE077D320A96s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibFC16D59B8D3EF438CBD649310DC27F0Fs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibD773878B744A482F228380E624EBE0FBs1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib8EB0510C13FF4E460BB844106B83BA44s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib8EB0510C13FF4E460BB844106B83BA44s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib04F22D2D4927C9AC442F828AB4356FC3s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib59D2EEA512930BB5B6DB6FCDB7A1F02As1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib59D2EEA512930BB5B6DB6FCDB7A1F02As1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib59D2EEA512930BB5B6DB6FCDB7A1F02As1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibAC409C39A21694B3C820EC5211A142F0s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib31976D09256E809A91863B99369BF016s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bib31976D09256E809A91863B99369BF016s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibD8A50FF8C1FFBCF1F2725F12C3604DC6s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibD8A50FF8C1FFBCF1F2725F12C3604DC6s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibACCFC01826D84CE9280BE8CDB564BF6As1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibBE361E15DBD9A86EF54255770A7519A4s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibBE361E15DBD9A86EF54255770A7519A4s1
http://refhub.elsevier.com/S0022-0531(21)00068-5/bibBE361E15DBD9A86EF54255770A7519A4s1

	Confounding dynamics
	1 Introduction
	2 Prediction with confounding dynamics
	2.1 Economic interpretation
	2.2 Connection to standard signal extraction

	3 Model, information, and equilibrium
	3.1 Model
	3.2 Information
	3.3 Examples
	3.4 Equilibrium definition
	3.5 Weighted sum of expectations
	3.6 Solution methodology

	4 Equilibrium with confounding dynamics
	4.1 Equilibrium with confounding dynamics: main theorem
	4.2 Outline of proof

	5 Application: business cycle with confounding dynamics
	6 Concluding comments
	Appendix A Proofs
	A.1 Full information solution
	A.2 Proof of Theorem 1
	A.3 Derivation of full information solution of RBC model
	A.4 Proof of Corollary 1

	Appendix B Supplementary material
	References


