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Abstract

We derive equivalence results in dynamic models with information frictions to

help solve for equilibrium and facilitate interpretation. Our primary theorem deliv-

ers an equivalence, in the aggregate, between models with dispersed and hierarchi-

cal information. Optimal signal extraction, in the dispersed case, suggests agents

treat the signal as true with probability equal to the signal-to-noise ratio, and false

with the complementary probability. Equivalence follows when the share of in-

formed agents, in the hierarchical model, is set equal to the signal-to-noise ratio in

the dispersed economy. The value of this theorem is due to the hierarchical model

being much easier to solve and interpret, especially when agents infer information

from endogenous sources. We also generalize the ubiquitous Hansen-Sargent for-

mula to models with incomplete information and derive equivalence-class repre-

sentations as a function of information. We use our results to study the behavior

of higher-order beliefs and information transmission in closed form in models with

dispersed information and endogenous signal extraction.
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1 INTRODUCTION

Models with incomplete information offer a rich set of results unobtainable in represen-

tative agent, rational expectations economies that have implications for business cycle

modeling, asset pricing and optimal policy, among others. And yet solving these models

remains a challenge, especially when agents infer information from endogenous sources

and information is dispersed evenly among all agents. We derive several “equivalence

results" to facilitate solving and interpreting models in this environment.

We present a novel equivalence result that facilitates the characterization of equilib-

ria in this environment. More precisely, we show that the aggregate representation of an

equilibrium in models with dispersed information is isomorphic that of a model with

two types of agents: informed and uninformed. We use the equivalence to gain impor-

tant insights on three aspects of models of incomplete information. First, their relation-

ship with the Hansen-Sargent formula, which imposes “cross-equations” restrictions

important for empirical identification. Second, the characterization of higher-order be-

liefs, which escapes full formalization in the absence of an equilibrium solution. Third,

the role of structural model parameters for the endogenous information transmission,

which is typically ignored due to its complex characterization, but that can potentially

constitute an important amplification/propagation channel.

Dispersed-Hierarchical Equivalence. Theorem 1 provides an equivalence, in the ag-

gregate, between models with dispersed information and models with hierarchical in-

formation. In the dispersed environment, there is a continuum of agents with each re-

ceiving an idiosyncratic noisy signal about the underlying state, coupled with informa-

tion gleaned from endogenous sources. In the hierarchical setup, there are two types

of agents: perfectly informed and uninformed. The uninformed agents can only per-

form endogenous signal extraction and remain uninformed in equilibrium. Given that

information can be ordered in models with hierarchical information, sufficient statistics

are available and equilibria relatively straightforward to compute. Conversely, with dis-

persed information, there is no sense in which the state can be summarized compactly

from the viewpoint of each individual agent.

Theorem 1 shows that the aggregate representations of these equilibria can be equated

once the parameter measuring the proportion of agents perfectly informed in the hi-

erarchical model is reinterpreted as the signal-to-noise ratio of the privately observed

signal in the dispersed information economy. This equivalence result can be under-

stood by thinking about the optimal signal extraction strategy of dispersedly informed

agents as a mixed strategy. With some probability, agents will act as if their private sig-
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nal is exactly correct, mimicking the behavior of the perfectly informed agents. With

the complementary probability, they will act as if their private signal contains no in-

formation about the state, mimicking the behavior of uninformed agents. While indi-

vidual forecasts maintain a well defined cross-sectional distribution of beliefs (Proposi-

tion 4), the idiosyncratic noise component does not survive aggregation, which delivers

our aggregate equivalence. The generality of this result extends beyond the setting dis-

cussed herein; Theorem 1 can be applied broadly to many models, even when analytical

tractability is no longer feasible. Theorem 1 allows us to gain important insights into the

interaction of information and dynamics in equilibrium which we exploit in analyzing

higher-order beliefs.

Equivalent Hansen-Sargent Representations. Since the rational expectations revolu-

tion, solving for equilibria in dynamic models relies on imposing a mapping from ex-

ogenous stochastic processes to endogenous variables through optimal behavior. This

mapping is often referred to as the Hansen-Sargent (1980) formula and makes clear the

cross-equation restrictions, which are the “hallmark of rational expectations models,"

Sargent (1981). Every dynamic model equilibrium with an expectation operator (even

those that are not rational) has a Hansen-Sargent representation.

Corollaries 1–3 generalize the Hansen-Sargent formula to models with information

frictions and derive equivalent representations to facilitate interpretation. These for-

mula make transparent the conditioning down necessary as information degrades from

a perfect foresight to a full information to an incomplete information equilibria. In

models with heterogeneous beliefs, the Hansen-Sargent formula reveals that each agent

type views the “market fundamental” as a linear combination of the discounted sum of

the exogenous process and the forecast errors of the other agent types. Thus, agents

are forecasting the forecast errors of others, an addendum to the title of Townsend’s

(1983b) seminal work. This insight is the key to deriving restrictions on the exogenous

processes that ensure incomplete information is preserved in equilibrium. When en-

dogenous variables transmit information, the equilibrium fixed point problem typical

of the rational expectations paradigm involves a mapping from endogenous variables

to the agents’ information set: given the equilibrium obtained under the expectations

specified for a given information set, the information revealed in equilibrium should be

consistent with the information used to solve for the equilibrium. In dynamic settings

with incomplete information, this fixed point condition is nontrivial and a crucial aspect

of the equilibrium. Propositions 1 and 2 contain two equations—one that describes the

equlibrium dynamics and one that provides restrictions on exogenous processes that

guarantee uninformed agents do not learn too much from endogenous signal extrac-
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tion. The latter equation falls naturally from our generalized Hansen-Sargent formulas.

Higher-Order Beliefs. Equipped with an analytical characterization of the market equi-

libria under dispersed information due to Theorem 1 and equivalent Hansen-Sargent

representations of Corollaries 1–3, we are able to characterize the higher-order belief

(HoBs) representation of such equilibria in closed form and study the role of HoB think-

ing in the transmission of information.

In a dispersed information setting where every agent is equally uninformed, HoBs

do not exist in the traditional form. Agent i does not forecast the forecasts of agent j .

At the invidual level, each agent must think her information superior to that of other

agents in order for HoBs of this type to be optimal. How and why are HoBs formed? The

mixed-strategy intuition behind Theorem 1 provides the answer. From the viewpoint of

an arbitrary agent i , the optimality of signal extraction behooves her to act as informed

with probability equal to the signal-to-noise ratio. In so doing, she will recognize that a

fraction of agents is contemporaneously acting as uninformed. It follows that as an in-

formed agent, she should forecast the forecast error of the agents acting as uninformed

and embed it into her expectations about the future. She will adjust her time-t forecast

according to the collective ignorance of the uninformed agents (i.e., agents inferring the

signal as pure noise), despite the fact that she is contributing to this collective ignorance.

She correctly views her individual forecast error as infinitesimal in this regard and thus

irrelevant for her reasoning.

Information Transmission. We use our closed-form solutions to study information

transmission by calculating the informativeness of the exogenous signal just necessary

to perfectly reveal the underlying state (an alternative interpretation, due to Theorem 1,

is the exact fraction of informed agents necessary for perfect revelation of the underly-

ing state). We show how to solve for this statistic as a function of model parameters, and

then examine how it changes with these parameters and higher-order belief dynamics.

Corollary 4 derives a restriction on the informativeness of the signal in the dispersed

information economy as a function of deep parameters. An increase in the discount

factor or in the autocorrelation of the exogenous shock substantially facilitates informa-

tion transmission. Because agents are learning endogenously from the forecast errors

of other agent types, an increase in the persistence of these errors improves learning.

Increasing the discount factor and autocorrelation parameter promotes this persistence

in errors.

To understand the extent to which higher-order beliefs (HoBs) play a role in infor-

mation dissemination, we sequentially remove HoBs from the model and calculate our

3
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statistic of information transmission. That is, we remove HoBs of order one only (i.e, in-

formed agents time t expectation of the uninformed’s t +1 forecast error) and calculate

the share of informed agents necessary to fully reveal the underlying state. We then do

this for the informed agents time t expectation of the uninformed’s t+1 and t+2 forecast

error and calculate the share of informed agents necessary to fully reveal the underlying

state. We repeat this process, removing all higher-order belief dynamics sequentially.

The share of informed agents that can exist in the model before perfect revelation oc-

curs roughly doubles as all HoBs are removed. This suggests that higher-order beliefs

play a crucial role in information transmission.

Contacts with Literature. Our approach to solving rational expectations models with

dispersed information relies on finding fundamental moving average (FMAs) represen-

tations, applying the Wiener-Kolmogorov optimal prediction formula, and solving for

a rational expectations equilibrium via analytic functions. Hansen and Sargent (1980)

and Townsend (1983a) were early advocates of deriving FMAs as a way of finding the

agents’ innovations representation. Like our paper, Taub (1989), Kasa (2000), Walker

(2007), Rondina (2009), Acharya (2013), Kasa et al. (2014), Rondina and Walker (2021),

Mao et al. (2021), Huo and Takayama (2022), Jurado (2023), and Han et al. (2023) em-

ploy frequency domain techniques to solve for a rational expectations equilibrium with

some form of information friction. One distinguishing feature of this paper relative to

many of those listed above is our emphasis on Hansen-Sargent (1980) formulas. The

Hansen-Sargent formula naturally follows from these techniques and we provide an in-

formational interpretation of this equation.

Some form of Theorem 1 is likely operational in dynamic models when information

is dispersed according to a noisy signal of the underlying state. Several recent papers

study similar forms of dispersed information in dynamic macro or asset pricing mod-

els. In addition to the papers listed above, a non-exhaustive list includes, Hellwig and

Venkateswaran (2009), Lorenzoni (2009), Mackowiak and Wiederholt (2009), Angeletos

and La’O (2009), Angeletos and La’O (2013), and Huo and Pedroni (2023). Angeletos and

Lian (2016) provides an excellent review of incomplete information in macro modeling.

Our theorem therefore presents a class of rational expectations equilibria that could po-

tentially emerge in such models, but have yet to be characterized. The theorem also

provides useful decompositions that facilitate interpretation.

Equivalence results have been employed in the incomplete information literature to

great effect over the years. For example, needing to find a way to compact a potentially

infinite dimensional state space, Sargent (1991) first recognized that low-order ARMA

processes could mimic infinite-dimensional moving average representations. Kasa (2000)

4
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pushed this interpretation further by showing the ease with which these calculations are

completed in the frequency domain. More recently, Huo and Pedroni (2020) and An-

geletos and Huo (2021) are two excellent examples of how equivalence results can aid in

computation, interpretation, and evaluation of equilibria with information distortions.

2 MODELS AND EQUILIBRIUM REPRESENTATIONS

For transparency, we derive our equivalence results within the context of a generic, uni-

variate rational expectations model and discuss extensions in Section 4. As a bench-

mark, we begin with a full-information, representative agent formulation. The model

consists of an equilibrium equation and a stochastic, exogenous process

yt =βEt yt+1 +xt (1)

xt = A(L)εt , εt ∼ N (0,σ2
ε) (2)

where xt = A(L)εt = A0εt +A1εt−1+·· · , L is a lag operator Lxt ≡ xt−1, and the coefficients

satisfy square summability,
∑

j A2
j
<∞. Representation (2) places no restrictions on the

serial correlation properties of xt . The Wold Decomposition Theorem allows for such a

general representation.

2.1 FULL INFORMATION Following standard procedure, we look for a solution of the

endogenous variable, yt , that satisfies square summability and exists in the agents’ in-

formation set. The full-information solution assumes that the agents have perfect knowl-

edge of current and past shocks. Denote this full information or “Informed” (I ) infor-

mation set as, ΩI
t = {εt− j }∞

j=0
, which suggests a guess for the equilibrium of the form

yt = Y (L)εt = Y0εt +Y1εt−1 +·· · . Conditional expectations are evaluated via the Wiener-

Kolmogorov optimal prediction formula,

E
I
t [yt+1] = E[Y (L)εt+1|εt ,εt−1, ...] = L−1[Y (L)−Y0]εt

= L−1[Y0 +Y1L+Y2L+·· ·−Y0]εt = Y1εt +Y2εt−1 +·· · (3)

The prediction formula instructs the agent to subtract off the εt+1 term as it does not

enter the agents’ information set and has an expected value of zero.

Substituting the equilibrium guess yt = Y (L)εt and the expectation (3) into equa-

tion (1) gives Y (L)εt = βL−1[Y (L)−Y0]εt + A(L)εt . We use techniques first established

in Whiteman (1983) and use analytic function theory to solve for the rational expecta-

tions equilibrium. This methodology invokes the Riesz-Fischer Theorem, which states

5
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that the sequential problem of finding Y0,Y1,Y2, ... has an equivalent representation as a

functional problem in the Hardy space of analytic functions Y (z). Our problem becomes

one of finding the function Y (z) that solves

Y (z) =βz−1[Y (z)−Y0]+ A(z)

=
z A(z)−Y0

z −β
(4)

Following a long tradition in rational expectation modeling, we look for solutions to

the sequential problem that satisfy square summability,
∑

j Y 2
j
< ∞ (i.e., we look for

bounded or stationary equilibria). Square summability is tantamount to analyticity in-

side the unit circle in the space of z-transforms. The Y (z) process given by (4) has a pole

at z = β. If |β| > 1, the Y (z) process is analytic inside the unit circle but has a undeter-

mined parameter Y0. In this case, Y0 cannot be uniquely pinned down and the rational

expectations model has an infinite number of equilibria. If |β| < 1, the process is not

analytic inside the unit circle and Y0 is needed to remove the pole at z = β, which gives

Y0 = βA(β). Under this scenario, the rational expectations solution is unique and given

by

Y (z) =
z A(z)−βA(β)

z −β
(5)

which is the ubiquitous Hansen-Sargent formula [Hansen and Sargent (1980)].

This equation displays the cross-equation restrictions known as the “hallmark” of

rational expectations models, but there is also an informational interpretation to the

H-S formula that we take advantage of throughout the paper. The first component,

z A(z)/(z −β), is the perfect foresight equilibrium; that is, iterate (1) forward, impose

the law of iterated expectations and a no-bubble condition to solve

yt = E
I
t

∞∑

j=0

β j xt+ j = E
I
t

(
L A(L)

L−β

)
εt (6)

If we appended the agents’ information set with future values of εt , ΩPF
t = {εt− j }∞

j=−∞,

(6) (after removing the expectation operator) would be the rational expectations equi-

librium. Therefore the last element of the H-S formula, βA(β)/(z −β), represents the

conditioning down associated with only observing current and past εt ’s. Subtracting off

this precise linear combination of future shocks, βA(β)
∑

j β
jεt+ j , stems from knowl-

edge that the model is given by (1)-(2) and the information set of ΩF I
t = {εt− j }∞

j=0
.1

1As shown in Appendix A of Hansen and Sargent (1980), agents who know the model is given by (6)
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2.2 INCOMPLETE INFORMATION Working within a representative agent framework, we

now derive an equilibrium with incomplete information. By incomplete information,

we mean an equilibrium that exists in a subset of the sequence generated by {εt− j }∞
j=0

.

One manner to derive such an equilibrium is to show that the endogenous process is

given by2

yt = (L−λ)Ỹ (L)εt |λ| ∈ [0,1) (7)

If |λ| ∈ [0,1), then agents only observing the sequence {yt− j }∞
j=0

will not be able to infer

the underlying shocks, {εt− j }∞
j=0

and will be “Uninformed” (U ) relative to the agents who

observe the underlying shocks, {εt− j }∞
j=0

. Using the terminology of Rozanov (1967), the

yt process is not fundamental for the εt sequence, and thus the information set gener-

ated by observing the yt ’s is a strict subset of that generated by the εt ’s.

To understand this endogenous signal extraction problem, first consider a similar

exogenous signal extraction problem

st =−ϑεt +εt−1 = (L−ϑ)εt , (8)

where εt is a mean-zero, normally distributed variable with variable σ2
ε and ϑ ∈ (0,1).

Rondina and Walker (2021) show the mean-squared error minimizing prediction for εt

conditional on observing current and past s is

E

(
εt |{st− j }∞j=0

)
=ϑ2εt︸︷︷︸ − (1−ϑ2)[ϑεt−1 +ϑ2εt−2 +ϑ3εt−3 +·· · ]︸ ︷︷ ︸ . (9)

information + noise from confounding dynamics

Expression (9) suggests that the process (8) is informationally equivalent to a noisy sig-

nal about εt , where the noise is the linear combination of past shocks (in the bracketed

term), and the signal-to-noise ratio is measured by ϑ2. A ϑ closer to zero results in less

information and more noise but, at the same time, it also makes past shocks less persis-

tent. As ϑ→ 0, there is no information in st about εt and the optimal prediction is 0, the

unconditional average. As long as |ϑ| ∈ (−1,1), the value of εt will never be learned and

in this sense, the history of the fundamental shock acts as a noise shock. The shocks are

perfectly correlated and no super-imposed noise process is necessary to keep full reve-

will form expectations optimally by subtracting off the principal part of the Laurent series expansion of

A(z) around β, which is βA(β)/(z −β).
2This particular type of signal extraction problem was first encountered in a rational expectations

setting in the seminal work of Townsend (1983b) and is motivated further in Rondina and Walker (2021).

7
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lation of information from occurring. An infinite history of past shocks is not sufficient

because the dynamic history of the shock confounds agents into making forecast errors

that would be persistent under the standard full-information rational expectations case.

Because of this, Rondina and Walker (2021) refer to this type of noise as displaying con-

founding dynamics.

Moreover, Rondina and Walker (2021) show that the more standard signal extrac-

tion problems (signal plus noise) can be calibrated to contain the same information as

a stochastic process with confounding dynamics. Specifically, suppose that agents ob-

serve an infinite history of the signal

St = εt +ηt , (10)

where ηt
i i d∼ N

(
0,σ2

η

)
. The optimal prediction is well known and given by E(εt |S t ) =

τSt , where τ is the relative weight given to the signal, τ = σ2
ε/(σ2

ε +σ2
η). Appendix A

proves the following equivalence between the two signal extraction problems, where

equivalence is defined as equality of variance of the forecast error conditioned on the

infinite history of the observed signal,

E

[(
εt −E

(
εt |s t

))2
]
= E

[(
εt −E

(
εt |S t

))2
]

(11)

when

ϑ2 = τ=
σ2
ε

σ2
ε+σ2

η

(12)

Notice that when the signal-to-noise ratio increases (decreases), this corresponds to a

higher (lower) absolute value of ϑ. In the limit, as σ2
η → 0, then ϑ2 → 1, which ensures

exact recovery of the state in both cases.3

Returning to our endogenous signal extraction problem of (7), we must first find the

corresponding innovations associated with observing current and past yt ; thus, we must

flip the λ root from inside the unit circle to outside the unit circle without changing the

moments of the yt process. This transformation is accomplished through the use of

Blaschke factors, Bλ(L) ≡ (L−λ)/(1−λL)

yt = (L−λ)Ỹ (L)εt = (1−λL)Ỹ (L)et (13)

et =
(

L−λ

1−λL

)
εt = (L−λ)(εt +λεt−1 +λ2εt−1 +·· ·) (14)

3Rondina and Walker (2021) emphasize that while the informational content can be made identical,

the dynamics of the two signal extraction problems are drastically different.

8
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Note that we are operating in well-defined Hilbert spaces with the covariance generat-

ing function serving as the modulus and that Blaschke factors have a modulus of one,

Bλ(z)Bλ(z−1) = 1, supporting the equality in (13). Note also that conditional expecta-

tions differ in the et and εt spaces.

The guess of the equilibrium process (13) must be verified, and uniquely so. This is

accomplished by forming the expectation

E[yt+1|ΩPI
t = {yt− j }∞j=0] = E[(1−λL)Ỹ (L)et+1] = L−1[(1−λL)Ỹ (L)− Ỹ0]et (15)

which is simply the Wiener-Kolmogorov optimal prediction formula applied to (13).

Substituting this expectation into (1) gives

(1−λL)Ỹ (L)Bλ(L)εt =βL−1[(1−λL)Ỹ (L)− Ỹ0]Bλ(L)εt + A(L)εt

We then repeat the functional analysis described above by solving for yt , assuming β ∈
(0,1),

(z −λ)Ỹ (z) =
z A(z)−βA(β)Bλ(z)/Bλ(β)

z −β
(16)

However, there is an additional step that we must take in order to prove that the ex-

pectation is consistent with (15) and that the sequence {yt− j }∞
j=0

does not reveal εt . We

assumed that the endogenous variable is not invertible in λ, this is only true if the RHS

of (16) vanishes at z = λ. This places a restriction on the exogenous process, namely,

A(λ) = 0, which we write as xt = (L−λ)Ã(L)εt , where Ã(L) does not have any zeros inside

the unit circle. If this restriction holds (which is tantamount to assuming the exogenous

process is not fundamental for εt ), then the unique rational expectations equilibrium is

given by (16). If this restriction does not hold, then the endogenous variable will com-

pletely reveal the underlying shocks and the equilibrium will be the full-information

equilibrium of Section 2.1. We have proved the following:

Proposition 1. Consider the economy described by (1)–(2) with expectations given by

E[yt+1|{yt− j }∞
j=0

]. If β ∈ (0,1) and

A(λ) = 0 (17)

9
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with |λ| ∈ (0,1), then the unique rational expectations equilibrium is given by

yt =
(

L(1−λL)Ã(L)−β(1−λβ)Ã(β)

L−β

)
et (18)

et =
(

L−λ

1−λL

)
εt

If |λ| > 1, then the rational expectations equilibrium is unique and given by (5).

From the perspective of the uninformed agents, the model lives in the et space as

shown by (18). The model is interpreted as solving the following discounted expectation,

yt = E
U
t

∞∑

j=0

β j xt+ j = E
U
t

(
L(1−λL)Ã(L)

L−β

)
et (19)

As with the full-information case, subtracting off the corresponding linear combination

of future shocks, β(1−λβ)Ã(β)
∑

j β
j et+ j , delivers the conditioning down term of the

rational expectations equilibrium in (18). However, the following corollary derives the

equilibrium in the εt space.

Corollary 1. There is an equivalent representation of the equilibrium of Proposition 1

given by

yt =
(

L(L−λ)Ã(L)−β(β−λ)Ã(β)

L−β

)
εt −

[
βÃ(β)(1−λ2)

1−λL

]
εt (20)

Representation (18) is the equilibrium in et space and (20) is the equilibrium in εt

space. They are equivalent representations of the same equilibrium. Representation

(18) is the standard looking Hansen-Sargent formula because this is the space that con-

tains the agents’ information set (current and past et ’s). The first element on the right-

hand side of (20) is the Hansen-Sargent formula under full information. The last term

on the RHS represents the conditioning down due to partial information. Notice that

as |λ| approaches one from below, this term vanishes and the model converges to the

full-information equilibrium.

To shed light on the representation (20), note the straightforward decomposition

E
U
t

∞∑

j=0

β j xt+ j = E
I
t

(
∞∑

j=0

β j xt+ j

)
−βÃ(β)(1−λ2)

∞∑

k=0

λkεt−k (21)

10
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The uninformed agents’ expectations of fundamentals at each future date can be writ-

ten as a linear combination of the expectation assuming agents see current and past

structural shocks E
I
t (xt+ j ), and a term given by linear combination of past εt ’s that the

agents do not observe. Notice that the linear combination is just the dynamic noise term

of equation (9) multiplied by the weight βÃ(β). As we show below, the representation of

Corollary 1 is particularly useful when interpreting equilibrium objects like higher-order

beliefs.

2.3 HIERARCHICAL INFORMATION We now introduce heterogeneity in the form of two

distinct groups of agents. The first group, in proportion µ, observes the underlying

shocks directly, Ω
µ
t = {εt− j }∞

j=0
. This group is fully informed (I ) and does not solve a

signal extraction problem. The second group, in proportion 1 −µ, only observes the

sequence of the endogenous variable, Ω
1−µ
t = {yt− j }∞

j=0
and are uninformed (U ). The

corresponding model to be solved is given by

yt =βµEI [yt+1|Ωµ]+β(1−µ)EU [yt+1|Ω1−µ]+xt (22)

Ω
µ
t = {εt− j }∞j=0, Ω

1−µ
t = {yt− j }∞j=0 (23)

Following the intuition of the previous section, we assume the endogenous variable is

given by the non-invertible process (7), yt = (L−λ)Ỹ (L)εt . In order to prove that such an

equilibrium exists, we need to derive a restriction on the exogenous process (xt ) similar

to that of (17). Merely assuming that the exogenous process is not invertible following

(17) is not sufficient as this restriction only pertains to the representative agent version

of Proposition 1. In a heterogeneous agent setup, the informed agents will impound

information into the sequence of endogenous variables and uninformed agents will en-

gage in endogenous signal extraction. We allow the less informed agents to learn through

observations of the endogenous variable, and therefore need to prove that the equilib-

rium process will not reveal the underlying shocks perfectly. The following proposition

derives a necessary restriction to keep the uninformed from learning the fundamental

shocks and characterizes the unique rational expectations equilibrium.

Proposition 2. Consider the economy described by (22) and (23). If β ∈ (0,1) and there

exists a |λ| ∈ (0,1) such that

A(λ)−
µβA(β)

µλ+ (1−µ)
(
β−λ

1−λβ

) = 0 (24)

11
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then the unique rational expectations equilibrium is given by

yt =
1

L−β

{
L A(L)−βA(β)

(
µλ+ (1−µ)Bλ(L)

µλ+ (1−µ)Bλ(β)

)}
εt (25)

with Bλ(L) ≡ L−λ
1−λL

and Bλ(β) ≡ β−λ
1−λβ .

Proof. See Appendix A.

The intuition behind Proposition 2 is similar to that of Proposition 1 with the im-

portant difference that now restriction (24) must be satisfied in order for asymmetric

information to persist in equilibrium. The initial guess of yt = (L −λ)Y (L)εt with |λ| < 1

implies uninformed agents, through knowledge of the endogenous variable alone, will

be able to infer the linear combination of current and past et = Bλ(L)εt . In order for

this informational assumption to survive in equilibrium, it must be the case that knowl-

edge of the model does not provide any additional information. More precisely, through

knowledge of the structural model (22), uniformed agents are able to subtract off their

expectation (EU ) from the equilibrium. What remains is the expectation of the informed

(EI ) and the exogenous process, xt . That is,

yt −β(1−µ)EU (yt+1) =βµEI (yt+1)+xt

=βµL−1
[

(L−λ)Y (L)−
λA(β)

h(β)

]
εt + A(L)εt (26)

where the last equality follows from the proof of Proposition 2 in Appendix A. Equa-

tion (26) provides the exact linear combination of structural shocks that the uninformed

agents are able to glean from performing endogenous signal extraction. The informa-

tion provided by (26) must be equivalent to et in order for equilibrium to be consistent

with rational expectations. This will be true if and only if (26) vanishes at L = λ. Condi-

tion (24) ensures that this is the case.

The equilibrium representation of Proposition 2 is algebraically the cleanest because

it makes clear µ → 0 implies convergence to the equilibrium of 1, and as µ → 1, the

equilibrium approaches the fully revealing equilibrium of Section 2.1. However there are

equivalent representations which have a more natural economic interpretation, which

we state as the following corollaries.

Corollary 2. The equilibrium described in Proposition 2 has an equivalent representation

12
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in ε space given by

yt =
(L A(L)

L−β

)
εt −

(βA(β)

L−β

)
εt − (1−µ)βMU (β)

(
1−λ2

1−λL

)
εt , (27)

where MU (β) = A(β)

β−λ−µβ(1−λ2 )
.

Proof. Follows directly from 2.

Representation (27) extends Corollary 1 to the heterogeneous agent case. The dif-

ference here lies in the third term, where the noise is multiplied by the cumulated term

MU (β) rather than Ã(β). Extending the intuition suggested by Corollary 1, the lag poly-

nomial MU (L) = A(L)
L−λ−µβ(1−λ2 )

represents the process for the exogenous process xt as

perceived by the uninformed agents in the hierarchical information equilibrium. Notice

that as µ goes to 0 the perception is once again Ã(L). When informed agents are present,

µ> 0, the perception changes and as µ increases it gets closer to the actual process A(L)

until it exactly coincides for some µ = µ∗ < 1. It is useful to think of the equilibrium

perception as being the result of two effects: one due to the simple presence of more

informed agents in the market, the other due to the higher-order beliefs that informed

agents implicitly form in an equilibrium with heterogeneous information; a point to

which we now turn.

In models with heterogeneous beliefs, optimal expectations imply that agents must

take into consideration the actions of others. The following representation of equilib-

rium shows how the agents of this model extract information from other agents’ forecast

errors in forming their beliefs of market fundamentals.

Corollary 3. The equilibrium described in Proposition 2 has an equivalent representation

in e space given by

yt =
1

L−β

{
(1−λL)LHU (L)− (1−λβ)βHU (β)

}
et , (28)

where HU (L) = (L−λ)−1{xt −µβ[yt+1 −E
I
t (yt+1)]}.

And a representation in ε space given by

yt =
1

L−β

{
LH I (L)−βH I (β)

}
εt (29)

where H I (L) = xt − (1−µ)β[yt+1 −E
U
t (yt+1)]

Proof. Follows directly from Proposition 2.

13
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Representations (28) and (29) take the more familiar Hansen-Sargent form and show

that agents’ beliefs about market fundamentals are intricately tied to the beliefs of other

agents. For the informed (uninformed) agents, the market fundamental is a combina-

tion of the exogenous process, xt , and the forecast error of the uninformed (informed)

agents. The modification of the Hansen-Sargent formula is due to the speculative dy-

namics associated heterogeneous information. By speculative dynamics, we mean that

agents take into account the forecast error of the other agent type when formulating

their belief for market fundamentals. Using these corollaries, we derive an analytical

form of these higher-order beliefs in Section 3.1.

2.4 DISPERSED INFORMATION The hierarchical informational assumption of the pre-

vious section is admittedly extreme. In this section we study equilibria under a more

reasonable informational setup. We assume that all agents are identical in terms of the

imperfect quality of information they possess. In particular, we assume each agent ob-

serves its own particular “window of the world,” as in Phelps (1969). Agents observe a

noisy signal of the innovation which is idiosyncratic across agents. Information is dis-

persed in the sense that, although complete knowledge of the fundamentals is not given

to any one agent, by pooling the noisy signal of all agents, it is possible to recover the full

information equilibrium.

The main result of the section is that the rational expectations equilibrium under

dispersed information takes the same form as the equilibrium under hierarchical infor-

mation (25), once the parameter that governs the share of informed agents µ is appro-

priately reinterpreted. This analogous representation allows one to immediately apply

the characterizations of the previous section (and the implications discussed in the next

section) to the more realistic dispersed information setup. At the same time, since no

agent is alike in the dispersed information setup, there are aspects of the equilibrium

that will not emerge in the hierarchical case.

Specifically, we assume agents (indexed by i ) observe the sequence of current and

past endogenous variables {yt− j }∞
j=0

in addition to a sequence of noisy signals, specified

as

εi t = εt +vi t with vi t
i i d∼ N

(
0,σ2

v

)
for i ∈ [0,1] (30)

Ω
i
t = {yt− j ,εi ,t− j }∞j=0 for i ∈ [0,1] (31)

14
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The model to be solved is

yt =β

∫1

0
E

i [yt+1|Ωi
t ]di +xt (32)

Notice that when the noise is driven to zero, σ2
v → 0, this setup is equivalent to the full

information equilibrium of Section 2.1, while an infinite noise, σ2
v → ∞, yields the in-

complete information equilibrium of Section 2.2.

What is unique about this setup is that each agent formulates a forecast by extracting

optimally the information from a vector of two signals
(
yt ,εi t

)
. The basic idea of deriv-

ing a fundamental representation developed above extends naturally to a multivariate

setting. The mapping between the signal and innovations is now a matrix, and the in-

vertibility of that matrix determines the information content of the signals. We maintain

the assumption that the endogenous variable contains exactly one zero inside the unit

circle; again, this is without loss of generality. The mapping between innovations and

signals is given by (
εi t

yt

)
=

[
1 1

(L−λ)Y (L) 0

](
εt

vi t

)
. (33)

Given the candidate price function, this matrix is of rank 1 at L = λ and so it cannot be

inverted. As shown in Appendix A and Rondina (2009), the invertible representation is

derived through use of a combination of Blaschke factors and factorization of the sig-

nal εi t . The optimal expectation will always be given by the sum of two terms: a linear

combination of current and past innovations εt and a linear combination of current and

past idiosyncratic noise vi t . Appendix A shows that taking the average of the expecta-

tions across agents, the second term will be zero, yielding

Et (yt+1) = [(L−λ)Y (L)+λY0]
σ2
ε

σ2
ε+σ2

v
εt + [(1−λL)Y (L)−Y0]

σ2
v

σ2
ε+σ2

v
et (34)

Substituting this expectation into the equilibrium and solving gives the following propo-

sition.

Proposition 3. Consider the economy described by (32) and (31). If β ∈ (0,1) and there

exists a |λ| ∈ [0,1) such that

A(λ)−
τβA(β)

τλ+ (1−τ)
(
β−λ

1−λβ

) = 0 (35)

15
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then the unique rational expectations equilibrium is given by

yt =
1

L−β

{
L A(L)−βA(β)

(
τλ+ (1−τ)Bλ(L)

τλ+ (1−τ)Bλ(β)

)}
εt (36)

with Bλ(L) ≡ L−λ
1−λL

, Bλ(β) ≡ β−λ
1−λβ and τ=σ2

ε/(σ2
v +σ2

ε) is the signal-to-noise ratio associ-

ated with the signal εi t in (31).

Proof. See Appendix A.

Theorem 1 follows immediately.

Theorem 1. Let τ≡σ2
ε/(σ2

v +σ2
ε) be the signal-to-noise ratio of (30). The rational expecta-

tions equilibrium of Proposition 3 is equivalent to the rational expectations equilibrium

of Proposition 2 when µ= τ.

The theorem states that in terms of aggregates, the dispersed information setup is

identical (i.e., same existence condition (24) and same equilibrium function (25)) to the

hierarchical information setup when the signal-to-noise ratio τ ≡ σ2
ε/(σ2

v +σ2
ε) is equal

to the proportion of informed traders, µ. This equivalence result can be understood by

thinking of the strategic behavior of the dispersedly informed agent. Each agent i re-

ceives a privately observed signal εi t and a publicly observed signal yt about the unob-

served fundamental εt . The optimal behavior—in terms of forecast error minimization—

is for the agent to act as if the signal εi t contained no noise and thus was equal to the

true state εt , in measure proportional to the informativeness of the signal τ. At the same

time, it is certainly possible that the signal is pure noise and thus it would be optimal to

ignore it and act just upon the public signal yt , this in measure (1−τ) ≡ σ2
v /(σ2

v +σ2
ε).

Thus, in a dispersed information setting each agent behaves optimally by employing a

“mixed strategy” approach: act as if they possess the full information of the informed

agents ΩI with probability τ, and act as if they possess just the public information of the

uninformed agents ΩU with probability 1−τ.

While Theorem 1 guarantees equivalence with the hierarchical setup at the aggre-

gate level, there exists important differences between the two equilibria at the individual

agent level. First, the dispersed information equilibrium displays a well defined cross-

sectional distribution of beliefs, as opposed to the degenerate distribution that would

emerge in the hierarchical case. Second, the cross-sectional variation is perpetual in

the sense that the unconditional cross-sectional variance is positive. In other words,

agents’ beliefs are in perpetual disagreement. These two results are stated in the follow-

ing proposition.

16
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Proposition 4. The cross-section of beliefs of Theorem 1 is given by

E
i
t (yt+ j ) = E

I
t

(
yt+ j

)
− (1−τ)Y j−1

1−λ2

1−λL
εt −τY j−1

1−λ2

1−λL
vi t for j = 1,2, .... (37)

The unconditional variance of the difference in beliefs across agents is given by

τ2
(
1−λ2

)
Y 2

j−1σ
2
v for j = 1,2, .... (38)

Proof. See Appendix A.

If information was complete, the beliefs would coincide with the expectation E
I
t

(
yt+ j

)
.

The difference of the beliefs of agent i with respect to the full information has two components—

one is common across agents, one is specific to each agent. The common component

is analogous to the error associated with being uninformed and was studied in the pre-

vious section, (1− τ)Y j−1((1−λ2)/(1−λL))εt . The second component is the result of

the agent acting as informed but not being able to cleanly distinguish between εt and

vi t . Optimal signal extraction implies that this particular linear combination of idiosyn-

cratic shocks will infiltrate agent i ’s optimal time-t expectation, while aggregating over

all agents eliminates this term. Thus, the unconditional variance of beliefs will be posi-

tive for all j . Proposition 4 offers an analytical form that can be useful in calibrating key

parameters of cross-sectional beliefs.

3 IMPLICATIONS

We now exploit our equivalence results to study higher-order beliefs (HoBs) and infor-

mation transmission. Theorem 1 permits an interpretation in which agents behave us-

ing a mixed strategy approach. We show that this intuition extends to forming higher-

order beliefs and derive an analytical characterization. We then employ the various

forms of Hansen-Sargent formulas found in Corollaries 1–3 to quantify the effect of en-

dogenous signal extraction on information transmission.

3.1 HIGHER-ORDER BELIEFS We begin by analyzing higher-order beliefs (HoBs) in

the hierarchical equilibrium of Proposition 2. While HoBs in economies with hierar-

chical information are relatively straightforward, it is the extension to the dispersed-

information economy, via Theorem 1, that is our contribution.

Higher-order beliefs in the hierarchical equilibrium follow most naturally from the
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equilibrium representations of Corollary 3, which we repeat here for convenience,

yt =
1

L−β

{
(1−λL)LHU (L)− (1−λβ)βHU (β)

}
et ,

where HU (L) = (L−λ)−1{xt −µβ[yt+1 −E
I
t (yt+1)]}.

And a representation in ε space given by

yt =
1

L−β

{
LH I (L)−βH I (β)

}
εt

where H I (L) = xt − (1−µ)β[yt+1 − E
U
t (yt+1)]. These Hansen-Sargent equations make

clear that each agent type believes that market fundamentals (i.e., the stochastic process

to be forecast) consists of the underlying exogenous process, xt , and the forecast error

of the other agent. Agents are forecasting the forecast errors of the other agent type.

The restriction from Proposition 2, A(λ)− (µβA(β))/(µλ+ (1−µ)Bλ(β)) = 0 ensures that

uninformed agents cannot learn more from the informed forecast error than the space

spanned by the et process. However, the uninformed do learn from this endogenous

signal extraction, which we discuss in more detail below.

In order to derive higher order beliefs, we iterate the equilibrium equation forward

by one period, yt+1 =βµEI
t+1[yt+2]+β(1−µ)EU

t+1[yt+2]+xt+1, noting that the functional

form of the equilibrium is yt = (L −λ)Y (L)εt ; the appendix shows the time t +1 average

expectation of the endogenous variable at t +2 can be written as the actual value at t +2

minus the average market forecast error, namely

µEI
t+1 yt+2 + (1−µ)EU

t+1 yt+2 = yt+2 +µY0λεt+2 − (1−µ)Y0Bλ(L)εt+2 (39)

The average market forecast error on the RHS of (39) has two components: the first

term represents the error made by the informed agents, Y0λεt+2, appropriately weighted

by the mass of informed agents in the market, µ; the second term, Y0Bλ(L)εt+2 = Y0et+2,

represents the forecast error of the uninformed agents, weighted by 1 −µ. We know

from the form of the lag polynomial Bλ(L) that the forecast error of uninformed agents

contains a linear combination of current and past innovations of the informed agents’

information set, et+2 = (L −λ)(1−λL)εt+2 = (L −λ)(εt+2 +λεt+1 +λ2εt +·· ·). Therefore,

the informed agents’ time-t expectation of the time t +1 average expectation is

E
I
t

(
Et+1 yt+2

)
= E

I
t yt+2 − (1−µ)Y0

(
1−λ2

1−λL

)
λεt (40)
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Hence, the informed agents will always do better (smaller forecast error), if they correct

their expectation of the average price according to the forecast errors of the uninformed.

Conversely, the uninformed cannot form HoBs because the forecast errors of the in-

formed, Y0µλεt+2, are not forecastable conditional on the uninformed’s information set

at time t , and so E
U
t (Et+1 yt+2) = E

U
t yt+2.

An immediate consequence of informed agents forming HoBs is that the law of iter-

ated expectations fails to hold with respect to the average expectations operator,

Et

(
Et+1 yt+2

)
= Et yt+2 −µ(1−µ)Y0

(
1−λ2

1−λL

)
λεt (41)

The whole structure of HoBs at any order can be analytically characterized and we direct

the interested reader to the general formula in Appendix A. Here we just remark that it is

the formation of HoBs that leads directly to the failure of the law of iterated expectations,

which is a function of the share of informed agents, µ, and the degree of asymmetric

information, as indexed by λ.

It is optimal for informed agents to adjust expectations by correcting the forecast er-

rors of the uninformed; optimal prediction necessitates these adjustments. As we show

below, HoBs exist in the dispersed information equilibrium as well. More formally, from

Theorem 1, we can write the time-t expectation of agent i of the equilibrium at t +1 as

Ei t

(
Et+1 yt+2

)
=µEi t

(
E

I
t+1 yt+2

)
+ (1−µ)Ei t

(
E

U
t+1 yt+2

)

From the hierarchical equilibrium, we know that EU
t+1 yt+2 = E

I
t+1 yt+2 −Y0

1−λ2

1−λL
εt+1. We

also notice that, because the information set of an arbitrary agent i is strictly smaller

than the information set of an informed agent of the hierarchical equilibrium and be-

cause the law of iterated expectations holds at the single agent level, we have Ei tEi t+1E
I
t+1 yt+2 =

Ei t yt+2. The law of iterated expectations holding at the single agent level also implies

Ei tEi t+1E
U
t+1 yt+2 = Ei tE

U
t+1 yt+2. Therefore

Ei t

(
Et+1 yt+2

)
=µEi t yt+2 + (1−µ)Ei t yt+2 − (1−µ)Y0Ei t

(
1−λ2

1−λL

)
εt+1 (42)

Forming higher-order beliefs and breaking the law of iterated expectations follows if the

last term is non-zero. Appendix A shows

(1−µ)Y0Ei t

(
1−λ2

1−λL
εt+1

)
= Y0(1−µ)µλ

(
1−λ2

)

1−λL
εi t (43)
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We have proved the following.

Proposition 5. Consider the dispersed-information economy described by (32) and (31).

If Proposition 3 holds, then

i. all agents form higher order beliefs

ii. the average expectations operator does not satisfy the law of iterated expectations.

At face value, this result seems counterintuitive because all agents are similarly un-

informed. Each agent must think that her information is somehow superior to the infor-

mation of the other agents in order for HoBs to be optimal. The intuition behind The-

orem 1 provides the answer. Take any arbitrary agent i . This agent is instructed by the

optimality of signal extraction to act as informed with probabilityµ. In so doing, she will

recognize that a fraction 1−µ of agents is contemporaneously acting as uninformed.

It follows that as an informed agent, agent i should forecast the forecast error of the

agents acting as uninformed and embed it into her expectations about the future. She

will adjust her time-t forecast according to the collective ignorance of the uninformed

agents (i.e., agents inferring the signal as pure noise). This ignorance accumulates at

time t +1, t +2, etc. and therefore, (42) generalizes to higher orders. At the same time,

she is acting as uninformed as well and is part of the portion of 1−µ agents of whom she

is forecasting the forecast errors. However, the relevance of her individual forecast error

is infinitesimal in this regard and thus irrelevant for her reasoning as informed.

3.2 INFORMATION TRANSMISSION Endogenous signal extraction plays a crucial role

in models with heterogeneous beliefs but mechanisms of information transmission are

typically intractable. Our analytical solutions permit analysis of information transmis-

sion which we exploit by calculating the exact informativeness of the signal (or, due to

Theorem 1, the share of informed agents), needed to completely reveal the underlying

state. That is, we can use the existence criteria of Propositions 2 and 3, specifically Equa-

tion (35), to determine the required τ or µ necessary to completely reveal the underlying

shock sequence, εt . Moreover, we can do so as a function of underlying parameters and

as a function of higher-order beliefs. The change in this statistic with respect to these

parameters and higher-order beliefs gives us an accurate measure of information trans-

mission.

We begin with Figure 1, which characterizes the dispersed information equilibrium

of Proposition 3 in the (β,θ) space for the exogenous process, xt = ρxt−1 + εt +θεt−1.

(Of course given Theorem 1, this figure also characterizes equilibrium for the hierarchi-

cal formulation of Proposition 2.) The figure is built around the following corollary to

Proposition 3.
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Corollary 4. Consider the dispersed-information economy described by (32) and (31) of

Proposition 3 with xt = ρxt−1 + εt + θεt−1, β,ρ ∈ (0,1) and θ > 0. The equilibrium is

characterized in the (β,θ) space according to the following restrictions:

(4.a) If θ ≤ 1, a dispersed information equilibrium does not exist and the model is char-

acterized by the full-information counterpart of Section 2.1.

(4.b) If θ > 1, a dispersed information equilibrium exists for any τ> 0 and ρ ≥ 0 if

θ ≥
( 1

1−β(1+ρ)

)
(4.b)

(4.c) If θ > 1 and (4.b) is not satisfied, a dispersed information equilibrium exists for

signal-to-noise ratio τ if and only if τ ∈ (0,τ⋆) with

τ⋆ =
(θ−1)(1−ρβ)

β(1+ρ)(1+θβ)

Proof. See Appendix A.

ρ = 0

ρ = 0.5

ρ = 0.99

0 1
0

1

β

1/θ

Full Information

Dispersed if τ< τ⋆

Dispersed ∀ τ

Figure 1: (β,θ) Existence Space. Existence of Dispersed and Full-Information Equilibria

following Proposition 3 for xt = ρxt−1 +εt +θεt−1. Equilibria to the right of the dashed

line preserve heterogeneity in information if and only if τ< τ⋆.
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Three points are noteworthy. First, as is evident from the figure and condition (4.a),

if θ ≤ 1, the endogenous variable fully reveals the underlying shock, εt , and the equi-

librium is consistent with the complete information case of Section 2.1. With θ ≤ 1,

confounding dynamics are not present in the exogenous process and xt is fundamental

for εt . Second, from condition (4.c) and Figure 1, for a certain region of the parameter

space (to the right of the dashed lines in figure 1) a dispersed information equilibrium

exists only if the signal-to-noise ratio is sufficiently small. The dashed lines represent

the equilibrium that prevails as τ→ 1, plotted for various serial correlation parameters.

To the left of the dashed line, dispersed information will always be preserved in equi-

librium regardless of the informativeness of the signal. The derivations of Section 2.2

demonstrate that an increase in θ may be interpreted as an increase in the noise asso-

ciated with the endogenous signal extraction problem. The information content of the

endogenous variable is sufficiently small that no matter how informative the exogenous

signal, the full information equilibrium cannot be learned. How the discount factor β al-

ters the space of existence is similar to that of the serial correlation parameter ρ, which

is the final point to be made. As the serial correlation in the xt process increases and

β increases, it is more difficult to preserve dispersed information, ceteris paribus (the

dashed line shifts to the left as ρ increases from 0 to 0.99). An increase in β and ρ leads

to a longer lasting effect of current information. This results in a higher |λ| and a de-

crease in the informational discrepancy between fully informed and uninformed agent

types.

Higher-order belief dynamics play a crucial role in disseminating information. As

discussed above, informed agents are correcting for the bias in the uniformed agents’

forecast errors, so there is an important feedback mechanism at work. The uninformed

agents are able to extract information about their own forecast errors by observing the

endogenous variables due to the formation of HoBs. One consequence of this informa-

tional feedback effect is highlighted in Figure 2. This figure shows the existence space

of the dispersed or hierarchical equilibria of Propositions 2 and 3 as higher-order belief

dynamics are sequentially removed from the expectation of the informed agents. That

is, we solve the equilibrium imposing that the law of iterated expectations holds at hori-

zon t = 1, and derive the corresponding existence space given by Corollary 4. We then

impose the law of iterated expectations at t = 1,2 and derive the existence space; impose

the law of iterated expectations at horizons t = 1,2,3, and so forth. The x-axis indicates

the horizons of HoBs removed. As HoBs are removed, the dispersed information equi-

librium can support more informed agents or a higher signal-to-noise ratio. This is be-

cause the information that the uninformed are extracting from the endogenous variable
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Full Information

Hierarchical

0 10 20 30 40 50
0.06
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µ⋆

All HOBs No HOBs

∞

µ⋆

Figure 2: Existence space for the hierarchical information equilibrium as higher-order

beliefs are removed from the expectation of informed agents: xt = 0.8xt−1+εt +
p

11εt−1,

β= 0.985.

is declining as fewer HoBs are being formulated. When we impose the law of iterated

expectations on the entire dynamic structure (No HoBs or ∞ on the x-axis for Figure

2), the number of informed agents or the informativeness of the exogenous signal can

nearly double (from 0.065 to 0.122) without fully revealing all underlying shocks.

4 CONCLUDING COMMENTS

While our results are derived in a univariate framework for transparency, the solution

procedures in Rondina and Walker (2021) are a guide to multivariate extensions. The

real business cycle model contained therein pushes the limits of our closed-form ex-

pressions but also demonstrates that our propositions and corollaries are applicable in

much larger models. This paper is not one of “limiting cases.”

Perhaps more importantly, Theorem 1 can be applied broadly to many models, even

when analytical tractability is no longer feasible. As long as the information structure

consists of a continuum of agents that receive idiosyncratic signals on the true underly-

ing state, the intuition of Theorem 1 can be invoked. Agents will apply the optimal mixed

strategy to signal extraction that can be mapped directly into an informed-uninformed

framework.
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A PROOFS

A.1 PROOF OF EQUATIONS (11)–(12) We need to show that the representations (8) and

(10) are equivalent in terms of unconditional forecast error variance

E

[(
εt −E

(
εt |S t

))2
]
= E

[(
εt −E

(
εt |s t

))2
]

(44)

when ϑ2 = τ=σ2
ε/(σ2

ε+σ2
η).

The optimal forecast E[εt |S t ] is given by weighting St according to the relative variance

of ε, E(εt |S t ) =
( σ2

ε

σ2
ε+σ2

η

)
St and therefore,

E

[(
εt −E

(
εt |S t

))2
]
=

σ2
εσ

2
η

σ2
ε+σ2

η

(45)

Calculating the variance of the one-step-ahead forecast error for st = (L −ϑ)εt requires

more careful treatment. The fundamental representation is derived through the use of

Blaschke factors

st = (L−ϑ)

(
1−ϑL

L−ϑ

)(
L−ϑ

1−ϑL

)
εt = (1−ϑL)et (46)

et =
(

L−ϑ

1−ϑL

)
εt (47)

Given that (46) is an invertible representation then the Hilbert space spanned by current

and past xt is equivalent to the space spanned by current and past et . This implies

E(εt |e t ) = E(εt |s t ) (48)

To show (48) notice that (47) can be written as

εt =C (L)et =
[

1−ϑL

L−ϑ

]
et =

[
L−1 −ϑ

1−ϑL−1

]
et = (L−1 −ϑ)

∞∑

j=0

ϑ j et+ j (49)

Thus, while (46) does not have an invertible representation in current and past e it does

have a valid expansion in current and future e . Applying the optimal prediction formula,

E(εt |e t ) =
[
C (L)

]
+et =−ϑet =

( −ϑ
1−ϑL

)
st = E(εt |s t ) (50)
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We must now calculate

E

[(
εt −E

(
εt |s t

))2
]
=E

(
ε2

t

)
+E

(
εt |s t

)2 −2E
(
εtE

(
εt |s t

))
(51)

=σ2
ε+ϑ2σ2

ε−2E(εt

(
εt |s t

)
) (52)

where we’ve used the fact that the squared modulo of the Blaschke factor is equal to 1,
(

1+ϑz
z+ϑ

)(
1+ϑz−1

z−1+ϑ
)
= 1, and therefore E(e2) = σ2

ε. To calculate E(εt

(
εt |s t

)
) we use complex

integration and the theory of the residue calculus,

E(εt et ) =
−ϑσ2

ε

2πi

∮
z −ϑ

1−ϑz

d z

z
=σ2

ε

[
lim
z→0

z −ϑ

1−ϑz

]
=ϑ2σ2

ε (53)

Equations (52) and (53) give the desired result

E

[(
εt −E

(
εt |xt

))2
]
=

(
1−ϑ2

)
σ2
ε (54)

Equating (54) and (45) concludes the proof,

ϑ2 =
σ2
ε

σ2
ε+σ2

η

A.2 PROOF OF PROPOSITION 2 The conditional expectations for the informed and unin-

formed are given by

E
I
t (yt+1) = L−1[(L−λ)Y (L)+λY0]εt

E
U
t (yt+1) = L−1[(L−λ)Y (L)−Y0Bλ(L)]εt

Substituting the expectations into the equilibrium gives the z-transform in εt space as

(z −λ)Y (z) =βµz−1[(z −λ)Y (z)+λY0]+β(1−µ)z−1[(z −λ)Y (z)−Y0Bλ(z)]+ A(z)

and re-arranging yields the following functional equation

(z −λ)(z −β)Y (z) = z A(z)+βY0[µλ− (1−µ)Bλ(z)]

The Y (·) process will not be analytic unless the process vanishes at the poles z = {λ,β}.

28



RONDINA & WALKER: EQUIVALENCE

Evaluating at z =λ gives the restriction on A(·), A(λ) =−βµY0. Rearranging terms

(z −β)Y (z) =
1

z −λ

{
z A(z)+βY0[µλ− (1−µ)Bλ(z)]

}

=
1

z −λ

{
z A(z)+βY0h(z)

}
(55)

where h(z) ≡ [µλ− (1−µ)Bλ(z)]. Evaluating at z =β gives Y0 =− A(β)

h(β)
to ensure stability.

This implies that the restriction on A(·) is

A(λ) =
βµA(β)

h(β)

which is (24). Substituting this into (55) delivers (25).

A.3 PROOF OF PROPOSITION 3 Similar to solving the previous model, the first step

in the proof of Proposition 3 is to obtain an innovations representation for the signal

vector (εi t , yt ) that can be used to formulate the expectation at the agent’s level. That is,

we must find the space spanned by current and past observables, {εi ,t− j , yt− j }∞
j=0

. This

representation in terms of the innovation εt and the noise vi t is

(
εi t

yt

)
=

(
σε σv

(L−λ)Y (L) 0

)(
ε̂t

v̂i t

)
= Γ(L)

(
ε̂t

v̂i t

)
(56)

where we have re-scaled the mapping so that the innovations ε̂t and the noise v̂i t have

unit variance. Let the fundamental representation be denoted by

(
εi t

yt

)
= Γ

∗(L)

(
w 1

i t

w 2
i t

)
(57)

As with the hierarchical case, we must use Blaschke factors to flip the non-fundamental

root, λ, to outside the unit circle. However, we must also employ a Gram-Schmidit type

orthogonalization (Wλ) so that the Blaschke factor does not introduce additional unsta-

ble roots into the dynamic process. This decomposition is given by

Wλ =
1

√
σ2
ε+σ2

v

(
σε −σv

σv σε

)
, Bλ(L) =

(
1 0

0 1−λL
L−λ

)

Γ
∗(L) = Γ(L)WλBλ(L)
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with the vector of fundamental innovations

(
w 1

i t

w 2
i t

)
= Bλ(L−1)W T

λ

(
ε̂t

v̂i t

)

The expectation term for agent i is found by applying the the Wiener-Kolmogorov pre-

diction formula to the fundamental representation (57)

E(yt+1|εt
i , y t ) =

[
Γ
∗
21(L)−Γ

∗
21(0)

]
L−1w 1

i t +
[
Γ
∗
22(L)−Γ

∗
22(0)

]
L−1w 2

i t . (58)

It is straightforward to show that

Γ
∗
21 (L) = (L−λ) Y (L)

σεp
σ2
ε+σ2

v

, Γ
∗
21 (0) =−λY0

σεp
σ2
ε+σ2

v

Γ
∗
22 (L) =− (1−λL)Y (L)

σvp
σ2
ε+σ2

v

, Γ
∗
22 (0) =−Y0

σvp
σ2
ε+σ2

v

Solving for the equilibrium requires averaging across all the agents. In taking those av-

erages, the idiosyncratic components of the innovation (the noise) will be zero and one

will have two terms that are functions only of the aggregate innovation, namely

∫1

0
w 1

i t di = w 1
t =

σεp
σ2
ε+σ2

v

ε̂t and

∫1

0
w 2

i t di = w 2
t =− σvp

σ2
ε+σ2

v

L−λ

1−λL
ε̂t .

The average market expectation is then

Ē(yt+1) = [(L−λ)Y (L)+λY0]L−1 σ2
ε

σ2
ε+σ2

v
ε̂t + [(1−λL)Y (L)−Y0]L−1 σ2

v

σ2
ε+σ2

v

L−λ

1−λL
ε̂t (59)

Now, if we let

τ≡ σ2
ε

σ2
ε+σ2

v
,

and substitute the functional form of the average expectations into the equilibrium equa-

tion for yt , we would get

(L−λ)Y (L) =βµL−1[(L−λ)Y (L)+λY0]+β(1−µ)L−1
[

(L−λ)Y (L)+Y0
λ−L

1−λL

]
+ A(L)σε
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Setting Y (L) = Q(L)σε, we can write the z-transform in εt space of the fixed point con-

dition

(z −λ)Q(z) =βτz−1[(z −λ)Q(z)+λQ0]+β(1−τ)z−1
[

(z −λ)Q(z)+Q0
λ−L

1−λL

]
+ A(z)

(60)

Re-arranging yields the following functional equation

(z −λ)(z −β)Q(z) = z A(z)+βQ0

[
τλ+ (1−τ)

λ− z

1−λz

]

The Q(·) process will not be analytic unless the process vanishes at the poles z = {λ,β}.

Evaluating at z =λ gives the restriction on A(·), A(λ) =−βτQ0. Rearranging terms

(z −β)Q(z) =
1

z −λ

[
z A(z)+βQ0

(
τλ+ (1−τ)

λ− z

1−λz

)]

=
1

z −λ

[
z A(z)+βQ0h(z)

]
(61)

where h(z) ≡ τλ+ (1−τ) λ−z
1−λz

. Evaluating at z = β gives Q0 = − A(β)

h(β)
to ensure stability;

this also results in uniqueness. The fixed point for λ can be then written as

A(λ) =
βµA(β)

h(β)

which is (35). Substituting this into (61) delivers (36), which completes the proof.

A.4 PROOF OF PROPOSITION 4 Once the analytic form for Γ∗
21 (L) andΓ

∗
22 (L) are known

from Proposition 3, one can compute E(yt+ j |εt
i
, y t ) for any j = 1,2, .... We show the j = 1

case here. SubstituteΓ
∗
21 (L) and Γ

∗
22 (L) into (58) and collecting the terms that constitute

(59), one gets

E(yt+1|εt
i , y t ) = Ē(yt+1)+

σε

σ2
ε+σ2

v

L−1[(L−λ)Y (L)+λY0 − (L−λ)Y (L)+Y0
L−λ

1−λL
]σv v̂i t

= Ē(yt+1)+
σε

σ2
ε+σ2

v

L−1[λY0 +Y0
L−λ

1−λL
]σv v̂i t

= Ē(yt+1)+µY0
1−λ2

1−λL
vi t , (62)

which completes the proof for the first statement of the theorem for j = 1. The variance

of the term µY0
1−λ2

1−λL
vi t can be readily computed since the innovations vi t are indepen-

dently distributed with variance σ2
v .
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A.5 HOBS WITH HIERARCHICAL INFORMATION Write the equilibrium as yt = (L−λ)Y (L)εt

where |λ| < 1 and Y (L) satisfies Proposition 2. For j = 1, the time t +1 average expecta-

tion at t +2 is given by

Et+1 yt+2 =µEI
t+1 yt+2 + (1−µ)EU

t+1 yt+2

= L−1(L−λ)Y (L)εt+1 +L−1Y0[µλ− (1−µ)Bλ(L)]εt+1

= yt+2 +L−1Y0[µλ− (1−µ)Bλ(L)]εt+1 (63)

The informed agent’s time t expectation of the average expectation at t +1 is

E
I
tEt+1 yt+2 = E

I
t yt+2 +µλY0E

I
t εt+2 −Y0(1−µ)EI

t Bλ(L)εt+2. (64)

Clearly E
I
t εt+2 = 0, whereas the expectation in the last term of (64) is given by

E
I
t Bλ(L)εt+2 = L−2{Bλ(L)−Bλ(0)−Bλ(1)L}εt (65)

where the notation Bλ( j ) stands for “the sum of the coefficients of L j ”. If we write

Bλ(L) = (L−λ)(1+λL+λ2L2 +λ3L3 +·· ·).

it is straightforward to show that Bλ(0) =−λ and Bλ(1) = (1−λ)(1+λ) = (1−λ2), from

which follows

Bλ(L)−Bλ(0)−Bλ(1)L =
L−λ

1−λL
+λ− (1−λ2)L =

λ(1−λ2)L2

1−λL
.

Putting things together, the informed agent’s expectation of the average expectation is

E
I
tEt+1 yt+2 = E

I
t yt+2 − (1−µ)Y0λ

( 1−λ2

1−λL

)
εt (66)

For the uninformed,

E
U
t Et+1 yt+2 = E

U
t yt+2 +Y0µλE

U
t εt+2 −Y0(1−µ)EU

t Bλ(L)εt+2

As for the informed case, EU
t εt+2 = 0; however, the second term now is EU

t Bλ(L)εt+2 = 0

because, by definition, Bλ(L)εt+2 is not in the information set of the uninformed agents

at time t . Hence E
U
t Et+1 yt+2 = E

U
t yt+2: the uninformed are not forming higher-order

expectations.
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Applying the above results to the market forecast of the market forecast one gets

EtEt+1 yt+2 =µEI
tEt+1 yt+2 + (1−µ)EU

t Et+1 yt+2 = Et yt+2 −µ(1−µ)Y0λ
( 1−λ2

1−λL

)
εt , (67)

which shows that the market forecast operator does not satisfy the law of iterated math-

ematical expectations. We can now characterize the entire structure of the market HOB.

For j = 2, we need to calculate EtEt+1Et+2 yt+3. From (63),

Et+2 yt+3 = yt+3 +Y0[µλ− (1−µ)Bλ(L)]εt+3

We then need the uninformed and informed’s time t+1 expectations of Et+2 yt+3. For the

uninformed we know from above (taking the time one period forward) that EU
t+1Et+2 yt+3 =

E
U
t+1 yt+3. From standard conditioning down one has

E
U
t+1 yt+3 =

[(1−λL)Y (L)

L2

]
+Bλ(L)εt+1

= L−2[(L−λ)Y (L)− (Y0 + (Y1 −λY0)L)Bλ(L)]εt+1 (68)

For the informed

E
I
t+1Et+2 yt+3 = E

I
t+1 yt+3 +µY0λE

I
t+1εt+3 − (1−µ)Y0E

I
t+1Bλ(L)εt+3

= L−2[(L−λ)Y (L)+λY0 − (Y0 −λY1)L]εt+1 − (1−µ)Y0λ
( 1−λ2

1−λL

)
εt+1. (69)

Combining (68) and (69) gives

Et+1Et+2 yt+3 = yt+3 +µ{λY0 − (Y0 −λY1)L}εt+3 −µ(1−µ)Y0λ
( 1−λ2

1−λL

)
εt+1

−(1−µ)[Y0 + (Y1 −λY0)L]Bλ(L)εt+3 (70)

Following the same argument that we used for the first order expectations it is easy to

conclude that the uninformed’s expectations of (70) are just

E
U
t Et+1Et+2 yt+3 = E

U
t yt+3 (71)

This is because the uninformed cannot forecast the informed forecast of their forecast

error; for the uninformed such forecast error belongs to information they will only re-
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ceive in the future. Formally

E
U
t

( 1

1−λL

)
εt+1 = E

U
t

( 1

L−λ

)
et+1 = E

U
t

∞∑

j=0

λ j et+1 = 0.

For the informed

E
I
tEt+1Et+2 yt+3 = E

I
t yt+3 −Y0µ(1−µ)λ2

( 1−λ2

1−λL

)
εt −Y1(1−µ)λ

( 1−λ2

1−λL

)
εt

= E
I
t yt+3 − (1−µ)(Y0µλ

2 +Y1λ)
( 1−λ2

1−λL

)
εt

Therefore the average expectation is

EtEt+1Et+2 yt+3 = Et yt+3 − (1−µ)(Y0µ
2λ2 +Y1µλ)

( 1−λ2

1−λL

)
εt . (72)

Comparing this to (67) one can already see a pattern in the coefficients multiplying the

noise term related to the forecast error of the uninformed. Iterating the process over and

over one obtains the generic form of the higher order market expectations for prices

EtEt+1 · · ·Et+ j yt+ j+1 = Et yt+ j+1 − (1−µ)
( j∑

i=1

(µλ)i Y j−i

)( 1−λ2

1−λL

)
εt

A.6 PROOF OF PROPOSITION 5 We begin by noticing that

Ei tEt+1 yt+2 =µEi tE
I
t+1 yt+2 + (1−µ)Ei tE

U
t+1 yt+2. (73)

From the hierarchical equilibrium, we know that EU
t+1 yt+2 = E

I
t+1 yt+2 −Y0

1−λ2

1−λL
εt+1. We

also notice that, because the information set of an arbitrary agent i is strictly smaller

than the information set of an informed agent of the hierarchical equilibrium and be-

cause the law of iterated expectations holds at the single agent level, we have Ei tEi t+1E
I
t+1 yt+2 =

Ei t yt+2. Because of the second property we also have that Ei tE
U
t+1 yt+2 = Ei tEi t+1E

U
t+1 yt+2.

Therefore

Ei tEt+1 yt+2 =µEi t yt+2 + (1−µ)Ei t yt+2 − (1−µ)Y0Ei t
1−λ2

1−λL
εt+1. (74)
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The crucial step in the proof is then to show that the expectation in the last term is non-

zero. In order to do so we first notice that L−λ
1−λL

εt+2 = 1−λ2

1−λL
εt+1 −λεt+2 and so

E

(
1−λ2

1−λL
εt+1|εt

i , y t

)
= E

(
L−λ

1−λL
εt+2|εt

i , y t

)
. (75)

Then, the crucial step in the proof is to show that

E

(
L−λ

1−λL
εt+2|εt

i , y t

)
=µλ

(
1−λ2

)

1−λL
εi t . (76)

where µ≡ σ2
ε

σ2
ε+σ2

v
. Remember that we defined

et =B(L)εt . (77)

From Theorem 1 in Rondina (2009) we know that

[
π1 (L) π2 (L)

]
=

[
L−2ge,(ε,y) (L)

(
Γ
∗(L−1)T

)−1
]
+
Γ
∗(L)−1 (78)

where Γ
∗(L) and

(
w 1

i t
, w 2

i t

)
are defined in (57) and ge,(ε,y) (L) is the variance-covariance

generating function between the variable to be predicted and the variables in the infor-

mation set. In our case we have that

ge,(ε,y) (L) =
[

B (L)σ2
ε B (L)

(
L−1 −λ

)
Y

(
L−1

)
σε

]
.

Plugging in the explicit forms and solving out the algebra

L−2ge,(ε,y) (L)
(
Γ
∗(L−1)T

)−1 = 1p
σ2
ε+σ2

v

[
L−2 L−λ

1−λL
σ2
ε+L−2

(
L−1 −λ

)
Y

(
L−1

) σ2
ε

σv
−L−2 σ2

ε+σ2
v

σv
σε

]
.

Applying the annihilator operator to the RHS we see that the second term of the vector

goes to zero. For the first term, the assumption that p(L) is analytic inside the unit circle

ensures that L−2
(
L−1 −λ

)
Y

(
L−1

)
does not contain any term in positive power of L. We

are then left with [
L−2 L−λ

1−λL

]

+
=

λ
(
1−λ2

)

1−λL
, (79)

Summarizing we have shown that

[ π1(L) π2(L) ] = 1p
σ2
ε+σ2

v

[ λ(1−λ2)
1−λL

σ2
ε 0 ]Γ∗(L)−1.
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Notice that

Γ
∗(L)−1[

εi t

yt

] =
[

w 1
i t

w 2
i t

]

so that

E
(
yt+2|εt

i , y t
)
=

[
π1 (L) π2 (L)

][
εi t

yt

]
= 1p

σ2
ε+σ2

v

λ
(
1−λ2

)

1−λL
σ2
εw 1

i t .

From the proof of Theorem 3 we know that w 1
i t
= 1p

σ2
ε+σ2

v

(εt +vi t ), which, once substi-

tuted in the above expression, completes the proof of statement (i). The proof can be

generalized to expectations of order higher than 1. For statement (ii) the proof follows

exactly the proof of Proposition 3 since it concerns only aggregate variables, which we

know from the proof of Theorem 1 follow the same patter as those of the hierarchical

case.

A.7 PROOF OF COROLLARY 4 The proof follows immediately from the restriction (24).

Condition (4.a) is derived by taking the limit of (24) as µ → 0 (or equivalently τ → 0).

This is the equilibrium that would exist if no informed agents populated the model. In-

tuitively, if no hierarchical information equilibrium exists in this case, then none would

exist if informed agents had positive measure. This restriction is given by A(λ) = 0 for

|λ| < 1, which for the process A(λ) = (1+θλ)/(1−ρλ), implies θ ∈ (0,1). Notice that be-

cause θ > 0, λ → −1 from above. Substituting λ = −1 into (24) and solving for µ gives

condition (4.c). When λ = −1, the equilibrium converges to the full-information case.

Setting µ⋆ equal to unity and solving for θ gives condition (4.b).
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