
Appendices

A Downward-sloping demand for satellites

In this Appendix, we extend the simple model to the case of per-period returns that depends nega-

tively on the stock of satellites in orbit. Our goal is to show that Kessler Syndrome is still possible,

with the conditions for its emergence appropriately modified. We begin by considering a technology

that uses satellites to produce output. This output is an aggregate bundle of goods and services

provided by different types of satellites, e.g. a composite good incorporating telecommunications,

imaging, etc. We normalize the price of the composite output to 1, and the unitary cost of a satellite

input as π > 0. The representative aggregator firm takes the unitary cost of a satellite as given and

maximizes the per-period profits

πZ1+η
t − ptZt.

where Zt denote the number of satellites operating at time t. The solution to the maximization

problem corresponds to the demand faced by the satellite operators:

π(1 + η)Zηt = pt.

The case considered in the main text is equivalent to a situation where the aggregation technology

is constant returns to scale, so that η = 0, and pt = π. The unitary return of a satellite can still

change over time, something that we do assume in the fully dynamic model, but the change is

exogenous to the stock of satellites, and it corresponds to a time-varying productivity π.

Let us consider the case of η < 0, which implies that the more satellites operating in orbit, the

lower the unitary return. An immediate implication of this negative relationship is that as the orbit

fills with satellites, the return on satellites declines, and so does the incentive to launch additional

satellites. It may appear that a downward-sloping demand curve makes it more difficult to congest

the orbit and obtain Kessler Syndrome. However, this argument is incomplete. It is important

to recognize that the orbit congestion depends on the total number of objects in orbit, while the

unitary return depends on the objects in orbit that are still operating. In other words, as the
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number of objects in orbit increases, the unitary return might also be increasing if the increase in

the number of orbiting objects is primarily due to the increase in debris while operating satellites

decline!

To see this in the context of our simple model, consider that in period t = s the number of

operating satellites is

Z = q(S)S (26)

while the total number of objects in orbit—which matters for the survival probability—is the number

of satellites launched at t = 0, S. So the unitary return in period t = s decreases as S increases

only if
dZ

dS
= q′(S)S + q(S) ≥ 0. (27)

If this condition does not hold, as more satellites are launched, the impact on the survival probability

dominates the impact on the operating satellites, and the per-period returns are actually increasing

in S, even when there is a downward-sloping demand for satellites. If we let q(X) = 1− S/X̄, the

condition above is violated whenever S > 1
2X̄, that is whenever the orbit is sufficiently congested.

The insight offered by this simple example is that a downward-sloping demand for satellites, when

combined with collision risk, might end up exacerbating the incentive to congest the orbit. We

believe this positive feedback mechanism is interesting, but we leave a systematic analysis of its

implications for future work. For the purpose of the current analysis we consider the argument

above as a reassurance that a constant return π is not an unreasonable assumption for our baseline

model.

Assuming that operators face the demand curve above, one can show that the condition for

Kessler Syndrome under open access becomes

F ≤ π(1 + η)

1 + r
SηKq(SK)1+η. (28)

Compared to the case of η = 0, Kessler Syndrome is more likely to occur in the presence of a

downward-sloping demand when [
SKq(SK)

]η
>

1

1 + η
. (29)
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Using once again the functional form q(X) = 1− S/X̄, this condition corresponds to

X̄ (√1 + 4σ − 1

2σ

)(
1 + 2σ −

√
1 + 4σ

2σ

)η > 1

1 + η
. (30)

Numerical computations show that the impact of η is non-monotonic. Setting X̄ = 1 and σ = 1

the inequality above holds approximately for η ∈ (−0.5, 0), with a peak in the gap at around −0.3,

which means that for a moderately downward-sloping demand, the positive feedback mechanism

described above is strongest.

Taken together, the results just presented indicate that the introduction of a downward-sloping

demand has an ambiguous effect on the emergence of Kessler Syndrome. Our maintained assumption

of a constant return π corresponds to balancing the two contrasting effects highlighted above. The

positive effect articulated here is an interesting and potentially important extension of our analysis

that we leave to future work.

B Proofs and derivations

B.1 Proofs omitted from main text

Proposition 1 (Kessler Syndrome). Let the dynamic model of objects in orbit be characterized by

equation (1) with σ > 0, and the Kessler threshold SK be defined as in equation (5), then

1. under the open-access equilibrium, Kessler Syndrome occurs if

π

1 + r
q(SK) ≥ F ; (6)

2. under the social planner allocation, Kessler Syndrome occurs if

π

1 + r

[
q(SK) + SKq

′(SK)
]
≥ F. (7)

Proof. First, recall the definition of Kessler Syndrome in the simple model: a launch rate S such

that S < X̄ while g(S) ≥ X̄. The smallest level of S at which this condition can hold is SK , since
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g(SK) = X̄, g(S) is increasing in S when σ > 0, and by assumption SK < X̄.

Suppose open access will cause Kessler Syndrome. Then Ŝ must be such that Ŝ < X̄ while

g(Ŝ) ≥ X̄, implying Ŝ ≥ SK . The equilibrium condition becomes

F = q(Ŝ)
π

1 + r
. (31)

Since q is decreasing in S, the above condition can be satisfied if and only if

F ≤ q(SK)
π

1 + r
. (32)

Next, suppose the social planner will cause Kessler Syndrome. Then S∗ must be such that

S∗ < X̄ while g(S∗) ≥ X̄, implying S∗ ≥ SK . The optimality condition becomes

F = [q(S∗) + S∗q′(S∗)]
π

1 + r
. (33)

Since q is decreasing in S, the above condition can be satisfied if and only if

F ≤ [q(SK) + S∗q′(SK)]
π

1 + r
. (34)

This completes the proof.

Proposition 2 (Multiplicity and instability). Given a positive excess return on a satellite and

a collision probability function which depends on satellites and debris, multiple open-access steady

states can exist if debris objects can collide and produce new debris (GD > 0). An open-access

steady state will be stable if and only if

(GD(S∗, D∗)− δ)︸ ︷︷ ︸
Net rate of

autocatalytic debris growth

<
LD(S∗, D∗)

LS(S∗, D∗)
(GS(S∗, D∗) +m(

π

F
− r))︸ ︷︷ ︸

Rate of new fragment reduction due to
equilibrium launch activity response to debris

. (21)

When G is strictly convex in both arguments and two steady states exist, the higher-debris steady

state is unstable.
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Proof. The proposition asserts:

1. Existence of multiple steady states: Given a positive excess return on a satellite, multiple

open-access steady states can exist if debris objects can collide and produce new debris.

2. Stability of steady states: An open-access steady state will be stable if and only if

(GD(S∗, D∗)− δ) < LD(S∗, D∗)

LS(S∗, D∗)
(GS(S∗, D∗) +m(

π

F
− r)). ((21))

3. Ordering of steady states: When G is strictly convex in both arguments and two steady states

exist, the higher-debris is unstable.

Before proving them, we establish a useful reduction.

0. A useful reduction: The open-access steady states are defined by equations (8), (9), and

(15), combined with the conditions Dt = Dt+1 = D and St = St+1 = S. Since L is monotone

increasing in both arguments it is invertible, and equation (15) implicitly determines the number

of satellites as a function of the amount of debris, the excess return on a satellite, and the collision

rate function,

L(S,D) =
π

F
− r =⇒ S = S(

π

F
− r,D). (35)

Since L is monotone increasing in each argument, S( πF − r,D) is monotone decreasing in D. Since

S must be nonnegative, there exists a nonnegative DS : S( πF − r,D) = 0 ∀D ≥ DS . Let Ŝ be the

equilibrium satellite stock as a function of the debris stock. So we have

Ŝ =


S( πF − r,D) if D ∈ [0, DS)

0 if D ≥ DS

(36)

Using Ŝ we can reduce equations (8), (9), and (15) to a single equation in debris,

Y(D) = −δD +G(Ŝ,D) +m(
π

F
− r)Ŝ,
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with the solutions

{D̂ ≥ 0 : δD̂ = G(Ŝ, D̂) +m(
π

F
− r)Ŝ} (37)

being the open-access steady states.

1. Existence of multiple steady states: Using the above reduction, we focus our attention

on solutions to equation (B.1). δD is monotonically increasing in D with δD = 0 when D = 0,

and m( πF − r)Ŝ is monotonically decreasing in D with Ŝ > 0 when D = 0, but Ĝ ≡ G(Ŝ,D) is

nonmonotone in D. To see this, note

dĜ

dD
(Ŝ,D) =

∂G

∂S︸︷︷︸
≥0

∂Ŝ

∂D︸︷︷︸
≤0

+
∂G

∂D︸︷︷︸
≥0

, with (38)

dĜ

dD
(Ŝ, 0) =

∂G

∂S

∂Ŝ

∂D
< 0 and (39)

dĜ

dD
(0, DS) =

∂G

∂D
> 0, (40)

where ∂Ŝ
∂D = −LD

LS
≤ 0 by application of the Implicit Function Theorem on equation (15).

Let D̂ be a solution to equation (B.1). If GD > 0, then Ĝ is nonmonotone in D and the existence

or uniqueness of D̂ cannot be guaranteed. If GD is large enough, D̂ will not exist; if GD is not too

small, multiple D̂ will exist. If GD = 0, then the existence of D̂ also ensures its uniqueness. If GD

is strictly convex in both arguments, at most two D̂ can exist.

2. Stability of steady states: Since Y(D) is a reduction of the open-access dynamical

system, its fixed points are isomorphic to the fixed points of equations (8), (9), and (15). The sign

of ∂Y∂D at solutions to Y(D) = 0 matches the sign of the respective eigenvalues of the full system.

Applying the Implicit Function Theorem to equation (35) to calculate SD and then differenti-

ating Y in the neighborhood of an arbitrary solution D∗, we obtain

∂Y

∂D
(D∗) = (GD(S∗, D∗)− δ)− LD(S∗, D∗)

LS(S∗, D∗)
(GS(S∗, D∗) +m(

π

F
− r)), (41)

where S∗ ≡ S( πF −r,D
∗). Both GS(S∗, D∗) andm( πF −r) are positive by assumption. So ∂Y

∂D (D∗) <

0 holds if and only if δ is small enough, or LD(S∗,D∗)
LS(S∗,D∗) is large enough, i.e.
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3. Ordering of steady states: When G is strictly convex in both arguments and Y(D) = 0

has two solutions. Denote the smaller solution by
¯
D, and the larger solution by D̄. The curve

G(Ŝ,D) + m( πF − r)Ŝ is above δD when D = 0, and again as D → ∞. Y(D) must therefore

approach 0 from above as D →
¯
D from the left, and from below as D → D̄ from the left. This

implies that at
¯
D,

∂Y

∂D
(
¯
D) = (GD(

¯
S,

¯
D)− δ)− LD(

¯
S,

¯
D)

LS(
¯
S,

¯
D)

(GS(
¯
S,

¯
D) +m(

π

F
− r)) < 0 (42)

and at the second solution, D̄,

∂Y

∂D
(D̄) = (GD(S̄, D̄)− δ)− LD(S̄, D̄)

LS(S̄, D̄)
(GS(S̄, D̄) +m(

π

F
− r)) > 0. (43)

where
¯
S = Ŝ(

¯
D) and S̄ = Ŝ(D̄).

Proposition 3 (Overshooting). Suppose the new fragment formation function is strictly convex in

both arguments and the launch rate constraint does not bind. Except on a set of measure zero, open

access paths from initial conditions with positive launch rates will overshoot the stable open-access

steady state in at least one state variable.

Proof. We first define the following sets and functions, where S,D ≥ 0 is assumed:

• The action region: the set of states with positive open-access launch rates,

A ≡
{

(S,D) :
π

F
− r − L(S′, D′) ≥ 0

}
, (44)

where

S′ = S(1− L(S,D)) +X

D′ = D(1− δ) +G(S,D) +mX,

• The equilibrium manifold:

E ≡
{

(S,D) :
π

F
− r − L(S,D) = 0

}
. (45)
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• The stable open-access steady state: following the reduction used in the proof of Proposition

2, we characterize the stable open-access steady state as

Es ≡
{

(Ŝ,D) : Y(D) = −δD +G(Ŝ,D) +m(
π

F
− r)Ŝ = 0,

Ŝ : L(Ŝ,D) =
π

F
− r, Y′(D) < 0

}
. (46)

• The physical dynamics: the mapping PSD : R2
+ → R2

+ which describes the effect of orbital

mechanics on the satellite and debris stocks in one period,

PSD(S,D) ≡
(
S(1− L(S,D)), D(1− δ) +G(S,D)

)
. (47)

• The one-step set: the set of states from which one period’s physical dynamics, followed by

launching, will read an open-access steady state,

AP1 ≡ {(S,D) : PSD(S,D) + (X,mX) ∈ Es, X ∈ (0, X̄]}. (48)

• The one-step ray: the set of states from which one period of launching will reach an open-access

steady state,

A1 ≡
{

(S,D) : (S +X,D +mX) ∈ Es, X ∈ (0, X̄]
}
, (49)

where m is the same as in the debris law of motion. The one-step ray can be viewed as

part of a decomposition of the satellite and debris laws of motion: after a period’s physical

dynamics have been applied, launches to the stable steady state occur from the one-step ray.

The one-step set encompasses both of these components.

Our proof proceeds in three steps. First, we show that initial conditions in the action region A

reaching points on the equilibrium manifold E \ ES must overshoot an open-access steady state.

Second, we establish the bijectivity of the physical dynamics PSD. Third, we show that these results

imply that the one-step set AP1 has zero Lebesgue measure on A.

1. Initial conditions in the action region A reaching points on the equilibrium man-
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ifold E \ ES must overshoot an open-access steady state: Since the launch rate constraint

does not bind, any point in A will by definition reach a point in E. Since Es contains at most one

element given the strict convexity of G while E is a manifold, Es ⊂ E. Given that L is increasing

in both arguments, points in E \Es must therefore have either larger S and smaller D than Es, or

vice versa. Consequently, reaching points in E \Es constitutes overshooting Es in one state variable

and undershooting in the other.

2. Bijectivity of the physical dynamics PSD: To show that PSD is a bijection on R2
+, we

separate the physical dynamics into two functions PS , PD : R2
+ → R+,

PS(S,D) = S(1− L(S,D)), (50)

PD(S,D) = D(1− δ) +G(S,D). (51)

PD is a sum of strictly monotone increasing functions, so is strictly monotone increasing as well.

Strictly monotone functions are bijections, so PD is a bijection. So for two arbitrary pairs (S1, D1)

and (S2, D2) we have

PSD(S1, D1) = PSD(S2, D2) ⇐⇒ PS(S1, D1) = PS(S2, D2) & PD(S1, D1) = PD(S2, D2) (52)

PS is a function, so we have (S1, D1) = (S2, D2) =⇒ PS(S1, D1) = PS(S2, D2), but since SL(S,D)

may be non-monotone the other direction may not hold. Since PD is a bijection, PD(S1, D1) =

PD(S2, D2) ⇐⇒ (S1, D1) = (S2, D2). Putting this together we have the following:

• If (S1, D1) = (S2, D2), then PSD(S1, D1) = PSD(S2, D2).

• If PSD(S1, D1) = PSD(S2, D2), then PS(S1, D1) = PS(S2, D2) and PD(S1, D1) = PD(S2, D2).

While there may exist a pair (S1, D1) 6= (S2, D2) such that PS(S1, D1) = PS(S2, D2), the

bijectivity of PD means PD(S1, D1) 6= PD(S2, D2).

Consequently, PSD(S1, D1) = PSD(S2, D2) if and only if (S1, D1) = (S2, D2), i.e. PSD is a

bijection on R2
+.
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3. The one-step set AP1 has zero Lebesgue measure on A:

By definition, A1 ⊆ A. Since Es contains at most one element, A1 is a single line segment, so

A1 ⊂ A. The Lebesgue measure on A of A1 is therefore zero.

Since PSD is a bijection, the Lebesgue measure of the pre-image of A1 under PSD,

P−1
SD(A1) ≡

{
(S,D) : PSD(S,D) ∈ A1

}
,

is the same as the Lebesgue measure of A1. Since P−1
SD(A1) = AP1, the Lebesgue measure on A

of AP1 is also zero. Lebesgue measure is isomorphic to any non-atomic probability measure, so

the one-step set is measure zero under any non-atomic probability measure. This gives the desired

result: initial conditions with positive open-access launch rates will overshoot the stable open-access

steady state except on a set of measure zero.

B.2 Optimal launch policy and external cost

The infinite-horizon sequence version of the fleet planner’s problem is

max
{Xt,St+1,Dt+1}∞t=0

StQ(St, Dt, Xt) +
1

1 + r

∞∑
τ=t

1

1 + r

τ−t−1

Xτ (
1

1 + r
Q(Sτ+1, Dτ+1, Xτ+1)− F ) (53)

s.t. Q(St, Dt, Xt) = π +
1

1 + r
(1− L(St, Dt))Q(St+1, Dt+1, Xt+1) (54)

St+1 ≤ St(1− L(St, Dt)) +Xt (55)

Dt+1 ≥ Dt(1− δ) +G(St, Dt) +mXt (56)

Xt ∈ [0, X̄] ∀t (57)

St+1 ≥ 0, Dt+1 ≥ 0 (58)

S0 = s0, D0 = d0 (59)

For generality, we include an upper bound X̄ on the allowable launch rate. If this never binds

then the appropriate shadow value will simply be identically zero (γX̄t
≡ 0). The planner’s La-
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grangian is

L (X,S,D, λ, γ) =
∞∑
t=0

(
1

1 + r

)t{
πSt − FXt + λSt

(
St(1− L(St, Dt)) +Xt − St+1

)
+ λDt

(
Dt+1 −Dt(1− δ)−G(St, Dt)−mXt

)
+ γXtXt + γX̄t

(X̄ −Xt) + γStSt+1 + γDtDt+1

}
(60)

The first-order necessary conditions for an optimal launch path are, ∀t up to T ,

LXt = −F + λSt −mλDt + γXt − γX̄t
= 0 (61)

LSt+1 =
1

1 + r
{π + λSt+1(1− L(St+1, Dt+1)− St+1LS(St+1, Dt+1))

− λDt+1GS(St+1, Dt+1)}+ γSt − λSt = 0 (62)

LDt+1 =
1

1 + r
{λDt+1(δ − 1−GD(St+1, Dt+1))− λSt+1St+1LD(St+1, Dt+1)}+ λDt + γDt = 0

(63)

LST+1
= γST

− λST
= 0 (64)

LDT+1
= λDT

+ γDT
= 0 (65)

with complementary slackness and transversality conditions

λSt
(
St(1− Lt +Xt − St+1

)
= 0 (66)

λDt
(
Dt+1 −Dt(1− δ)−Gt −mXt

)
= 0 (67)

γXtXt = 0, (68)

γX̄t(X̄ −Xt) = 0, (69)

γStSt+1 = 0, (70)

γDtDt+1 = 0 (71)

lim
T→∞

(
1

1 + r

)T
λSTST+1 = 0 (72)

lim
T→∞

−
(

1

1 + r

)T
λDTDT+1 = 0. (73)
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In what follows we drop time subscripts to reduce notational clutter. Period t values are shown

with no subscript, period t+ 1 values are marked with a ′ after the variable, and period t− 1 values

are marked with a ′ before the variable e.g. St−1 ≡ ′S, St ≡ S, St+1 ≡ S′. By (61),

λS = (1 + r)(F +
1

1 + r
mλD − γX + γX̄). (74)

In the next period, this becomes

λ′S = (1 + r)(F +

(
1

1 + r

)
mλ′D − γ′X + γ′X̄). (75)

By (62) and (63),

λS = π + (1 + r)γS +
1

1 + r
{λ′S(1− L(S′, D′)− S′LS(S′, D′))− λ′DGS(S′, D′)} (76)

λD =
1

1 + r
{λ′D(1 +GD(S′, D′)− δ) + λ′SS

′LD(S′, D′)} − (1 + r)γD. (77)

Using (75),

λS = π + (1 + r)γS − F (L(S′, D′) + S′LS(S′, D′)− 1)− 1

1 + r
λDGS(S′, D′) (78)

− 1

1 + r
mλD(L(S′, D′) + S′LS(S′, D′)− 1) + (L(S′, D′) + S′LS(S′, D′)− 1)(γ′X − γ′X̄) (79)

λD = FS′LD(S′, D′) +
1

1 + r
λ′D(1 +GD(S′, D′)− δ) +

1

1 + r
mλDS

′LD(S′, D′) (80)

−
(

(1 + r)γD + S′LD(S′, D′)(γ′X − γ′X̄

)
(81)
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Define

α′1 = π + (1− L(S′, D′)− S′LS(S′, D′))F (82)

α′2 = S′LD(S′, D′)F (83)

Γ′1 = GS(S′, D′)−m(1− L(S′, D′)− S′LS(S′, D′)) (84)

Γ′2 = 1− δ +GD(S′, D′) +mS′LD(S′, D′) (85)

κ′1 = (1 + r)γS − (γX′ − γX̄′)(1− L(S′, D′)− S′LS(S′, D′)) (86)

κ′2 = (1 + r)γD + S′LD(S′, D′)(γX′ − γX̄′), (87)

so that

λS = α′1 −
1

1 + r
λ′DΓ′1 + κ′1 (88)

λD = α′2 +
1

1 + r
λ′SΓ′2 − κ′2. (89)

Then,

λ′D =
λD − α′2 + κ′2

1
1+rΓ′2

. (90)

Substitute (74) and (90) in (88) to get the following expression for WD(S,D)

1
1+r{Γ

′
1(α′2 − κ′2) + Γ′2(α′1 + κ′1)}+ Γ′2(γX − γX̄ − F )

1
1+r (Γ′1 +mΓ′2)

. (91)

Iterate 91 to period t+ 1 and substitute into 90 to obtain

λ′D =
1

1+r{Γ
′′
1(α′′2 − κ′′2) + Γ′′2(α′′1 + κ′′1)}+ Γ′′2(γ′X − γ′X̄ − F )

1
1+r (Γ′′1 +mΓ′′2)

. (92)

Use (91) and (92) in (89) to get

α′1 = m(α′2−κ′2)−κ′1+
1
1

1+r

(γX̄−γX+F )+
Γ′1 +mΓ′2
Γ′′1 +mΓ′′2

(
Γ′′1

1

1 + r
(α′′2−κ′′2)+Γ′′2(

1

1 + r
(α′′1+κ′′1)−F+γ′X−γ′X̄)

)
.

(93)
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Evaluate (93) in the previous time period as:

α1 = m(α2 − κ2)− κ1 +
1
1

1+r

(′γX̄ −′ γX + F ) +
Γ1 +mΓ2

Γ′1 +mΓ′2

(
Γ′1

1

1 + r
(α′2 − κ′2) + Γ′2(

1

1 + r
(α′1 + κ′1)− F + γX − γX̄)

)
.

(94)

Subtract F ( 1
1

1+r

+ L′) from both sides and add F (L+ SLS) to both sides to obtain

π − rF − FL(S′, D′) = F (L(S,D) + SLS(S,D)− L(S′, D′)) +m(α2 − κ2)− κ1 +
1
1

1+r

(′γX̄ −′ γX) +
Γ1 +mΓ2

Γ′1 +mΓ′2(
Γ′1

1

1 + r
(α′2 − κ′2) + Γ′2(

1

1 + r
(α′1 + κ′1)− F + γX − γX̄)

)
(95)

=⇒ ξ(S′, D′) = LS(S,D)SF +
(
L(S,D)− L(S′, D′)

)
F︸ ︷︷ ︸

Congestion channel

+
Γ1 +mΓ2

Γ′1 +mΓ′2
Γ′2(

1

1 + r
α′1 − F )︸ ︷︷ ︸

Pollution persistence channel

+
1

1 + r

Γ1 +mΓ2

Γ′1 +mΓ′2
Γ′1α

′
2︸ ︷︷ ︸

Pollution hazard channel

+mα2︸ ︷︷ ︸
Pollution
hazard
channel

+
Γ1 +mΓ2

Γ′1 +mΓ′2

(
Γ′2(

1

1 + r
κ′1 + γX − γX̄)− 1

1 + r
Γ′1κ

′
2

)
− (mκ2 + κ1) +

1
1

1+r

(γ ¯′X − γ′X)︸ ︷︷ ︸
Adjustments for prior or upcoming corner solutions

.
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Along an interior launch path, the MEC ξ(S′, D′) reduces to

ξ(S′, D′) = LS(S,D)SF +
(
L(S,D)− L(S′, D′)

)
F +

Γ1 +mΓ2

Γ′1 +mΓ′2
Γ′2(

1

1 + r
α′1 − F ) +

1

1 + r

Γ1 +mΓ2

Γ′1 +mΓ′2
Γ′1α

′
2 +mα2,

(97)

and in an interior steady state the MEC further reduces to

ξ(S,D) = LS(S,D)SF + Γ2(
1

1 + r
α1 − F ) +

1

1 + r
(Γ1 +m)α2. (98)

B.3 The collision probability and new fragment formation functions

In this section we derive the functional forms of the collision probability and new fragment functions,

discuss the physical assumptions they encode, and describe our process for calibrating the physical

model in more detail.

For numerical simulations, we model the probability that objects of type j are struck by objects
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of type k as

pjk(kt) = 1− e−αjkkt , (99)

where αjk > 0 is a physical parameter (“intrinsic collision probability”) reflecting the relative

mean sizes, speeds, and inclinations of the object types (see Letizia (2016) for a derivation of the

physical content of αjk). The probability a satellite is destroyed is the sum of the probabilities it

is struck by debris and by other satellites, adjusted for the probability it is struck by both. For

satellite-satellite and satellite-debris collisions, equation 99 gives us

L(S,D) = pSS(S) + pSD(D)− pSS(S)pSD(D) (100)

= (1− e−αSSS) + (1− e−αSDD)− (1− e−αSSS)(1− e−αSDD)

=⇒ L(S,D) = 1− e−αSSS−αSDD. (101)

We write the new fragment formation function as

G(S,D) = FSDpSD(D) + FSSpSS(S) + FDDpDD(D), (102)

where Fjk is the number of fragments produced in a collision between objects of type j and

k. Letting FSS = βSSS, FSD = βSDS, and FDD = βDDD where βjk > 0 is a physical parameter

reflecting the physical compositions and masses of the colliding objects, and using the forms in

equation 99, we obtain

G(S,D) = βSS(1− e−αSSS)S + βSD(1− e−αSDD)S + βDD(1− e−αDDD)D. (103)

The form in equation 101 is convenient as it allows us to solve explicitly for the open access

launch rate and is easy to manipulate. Similar forms have been used in engineering studies of the

orbital debris environment, and are currently used by the European Space agency in developing

indices to study the long-term evolution of the orbital environment (Letizia, 2016; Letizia et al.,

2017; Letizia, Lemmens, and Krag, 2018).
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To derive equation 101, we consider balls (satellites and debris) being placed into bins (the set

of all possible orbital paths within the shell of interest). The probability of a specific satellite being

struck by another object is then equivalent to the probability that a randomly-placed ball ends up in

a bin containing the specific ball we are focusing on. This is a version of the “pigeonhole principle”,

used in Béal, Deschamps, and Moulin (2020) to derive a similar form for satellite-satellite collisions.

Suppose we have b equally-sized bins and n+ 1 balls in total, where b ≥ n+ 1. Without loss of

generality, we label the ball we are interested in as i. We will first place i into an arbitrary bin, and

then drop the remaining N balls into the b bins with equal probability over bins. The probability

a ball is dropped into a given bin is 1
b , and the probability a ball is not dropped into a given bin

is then b−1
b = 1 − 1

b . As we drop the remaining n balls, the probability that none of the balls is

dropped in the same bin containing j is

Pr(no collision with i) =

(
1− 1

b

)n
(104)

Consequently, the probability that any of the n balls are dropped into i’s bin is

Pr(collision with i) = 1−
(

1− 1

b

)n
. (105)

Now suppose we are interested in the probability that members of a collection of j balls, 1 ≤

j < b, end up in a bin with one of the remaining n + 1 − j balls. The probability that any of the

remaining balls end up in a bin with any of the j balls we are interested in is then

Pr(collision with i) = 1−
(

1− j

b

)n+1−j
. (106)

As the number of bins and balls grow large (limb,n→∞), we obtain

Pr(collision with i) = 1− e−j . (107)

Though neither the number of objects in orbits nor the possible positions they could occupy is

infinite, the negative natural exponential form is likely a reasonable approximation. If we suppose
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that we have two types of balls j and k of different sizes and bins the size of the smallest type of

ball, we get that the probability a ball of type k is dropped into in a bin with a ball of type j as

Pr(k–j collision) = 1−
(

1−
αjkk

b

)n+1−k
(108)

=⇒ lim
b,n→∞

Pr(k–j collision) = 1− e−αjkk, (109)

which is the form in equation 99, where αjk is a nonnegative parameter indexing the relative

sizes of objects j and k. In the orbital context, αjk reflects not only the sizes of the objects but

also their relative speeds and inclinations. From here we obtain the form of L by applying standard

rules of probability to satellite-satellite and satellite-debris collisions. Equation 103 follows from

the form of L.

This “kinetic gas-like” approximation is used extensively in the space debris modeling literature

as a tractable approximation of results from more complex and computationally-intensive orbital

mechanics simulators. It is most suitable for long-term modeling studies with “large” (relative to

the timescale of orbital interactions) time steps. As described in Letizia (2016), this approximation

is equivalent to modeling collisions as a Poisson process. The Poisson assumption that the number

of events occurring in non-overlapping time intervals are independent is equivalent to assuming that

objects move randomly throughout the shell volume. This assumption is clearly not true, leading

to our regularization approach described below. The assumption that the probability of an event

is proportional to the length of the interval implies that fragment clouds are dispersed enough,

and contain enough fragments, to be considered a continuum. Since our model is solved at annual

timesteps while debris clouds evolve at much smaller timescales, this assumption is reasonable for

our purposes.

B.4 Modeling debris growth over the next century

As we note in the main text, truly “unbounded” growth is unphysical, as collisional activity will

reduce the fragments to smaller sizes and objects in LEO will eventually decay due to drag, solar

radiation pressure, and other orbital perturbations. However, we follow the existing engineering

literature on source-sink evolutionary models of the debris environment in allowing unbounded
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growth over the next century (Talent, 1992; Lewis et al., 2009; Lifson et al., 2022). An example using

empirical data from a collision and the size-energy scaling law may help illustrate the underlying

reasoning for this modeling choice.

Consider a collision between two large intact bodies, e.g. an event like the Iridium-Cosmos

collision on February 10, 2009. Iridium 33 was an operational US communications satellite (S)

while Cosmos 2251 was defunct Russian communications satellite (D). The table below from Kelso

et al. (2009) shows the relevant size and mass characteristics of the initial objects and resulting

fragments.

Table 1: “Table 1. Pre-Collision Satellite Characteristics.” from Kelso et al. (2009)

Satellite Number of Pieces Total Volume (m3) Dry Mass (kg) Inclination (deg)
Iridium 33 386 3.388 556 86

Cosmos 2251 927 7.841 900 74

The average radii for fragments from Iridium and Cosmos were around 12.8 cm and 12.6 cm,

with average masses around 1.44 kg and 0.971 kg. These figures imply that the tracked fragments

larger than 10 cm radius account for most of the initial body masses.31

The relation between a uniform sphere’s kinetic energy and mass, given density ρ and velocity

v, is

KE(r) =
1

2
ρ

(
4

3
πr3

)
︸ ︷︷ ︸

mass = density×volume

v2. (110)

Suppose a fragment of around 10 cm radius is a uniform aluminum sphere—a common assumption

in debris modeling given the prevalence of aluminum in satellite construction, e.g. Letizia (2016).

Aluminum has a mass of around 2.7 g/cm3, giving a volume of 4188 cm3 and mass of around

11 kg. Typical objects in low-Earth orbit have velocities on the order of 10 km/s (Lifson et al.,

2022; D’Ambrosio et al., 2023).32 Such a fragment will therefore have a kinetic energy of roughly

550 megajoules , or approximately 131 kg of TNT (energy equivalent of 1 kg of TNT is 4.184

megajoules). This is in the category of “hypervelocity” impacts that can shatter the intact object

3110 cm is also the lower detection limit for sensor systems, raising concerns about censoring. The mass
accounting suggests censoring may not be quantitatively large.

32Velocity in orbit is linked with altitude—accelerating or decelerating along its forward direction raises and
lowers altitude, respectively.
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(?). If the object is like Iridium or Cosmos—not-atypical LEO satellites—it may produce hundreds

of fragments.

Since mass scales cubically with object radius, a reduction in average fragment size to 1 cm

radius reduces the mass to 0.011 kg, producing an impact energy of 0.55 megajoules—comparable

to the force of a hand grenade (European Space Agency, 2023). Even if it takes tens of collisions

with fragments of 1-10 cm radius to overcome shielding on a large intact object, the resulting

tens or hundreds of fragments will ensure net growth. To the extent that these objects move in

debris “fields”—which may occur systematically due to orbital mechanics factors, particularly when

a larger body is struck by a smaller one, e.g. Oltrogge et al. (2022); Oltrogge, Alfano, and Hall

(2022); Pardini and Anselmo (2023)— their lethal effects at these and even smaller sizes may be

amplified.

Suppose we take 1 cm to be a conservative “lethal size limit”. How long will it take for collisional

activity to reduce a fragment below this limit? Suppose the average cumulative annual collision

probability for an arbitrary debris fragment is 25%—perhaps a high estimate, but again erring on

the side of caution. That fragment will go roughly 4 years between collisions. If fragments are

reduced to roughly 1 cm radius after only two collisions, it would take about 8 years for that debris

fragment and its children to be rendered nonlethal. At 1% collision probability, the fragment’s

lethal lifetime is around 200 years.

At 575 km altitude, a large intact object has a residence time (i.e. time before it falls back to

Earth due to drag) on the order of 10 years, and a 10 cm fragment has a residence time on the

order of a year, for an upper bound on lethal lifetime of around 11 years. At 775 km altitude, the

residence times are around 190 years for an intact object and 10 years for a fragment, for an upper

bound on lethal lifetime of around 200 years. During their residence times the objects slowly drift

downwards, entering lower shells. Most satellites are currently near or above 575 km altitude. Since

plausible lethal lifetimes are on the order of relevant residence times, debris are likely to spend most

of their lives at lethal sizes. Given a sufficiently large amount of mass at currently-popular altitudes

(e.g. 100,000 satellites at 250 kg each spread over 550-800 km altitude), it seems reasonable to

consider potential growth to “unbounded” levels over the next century.
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B.5 Open access with a finite horizon

We employ an infinite-horizon modeling approach in the general model. However, one may rea-

sonably wonder whether our conclusions regarding the open-access equilibrium are sensitive to this

point. In this section we show that a finite-horizon problem with terminal period T (where it either

becomes prohibitively costly to use the volume or Kessler Syndrome occurs or both) produces the

same equilibrium condition.

Suppose there exists a final period, T , such that the potential launchers will all exit the market.

We are agnostic as to why this may be the case, except to note that if such a period exists, it must

be that there are no profits to be gained from launching after that period. In the final period, the

launcher’s value becomes

ViT (ST , DT , XT ) = max
xiT∈{0,1}

{(1−xiT )
1

1 + r
ViT+1(ST+1, DT+1, 0)+xiT

[
1

1 + r
Q(ST+1, DT+1)− F

]
}.

(111)

There are two possible cases here for the value of launching in the final period, 1
1+rQ(ST+1, DT+1)−

F :

1. 1
1+rQ(ST+1, DT+1) − F = 0. In this case the potential launchers are indifferent between

launching in the final period or not launching. By backwards induction the equilibrium path

up to period T will match the one derived in the general model in the main text, with equation

(15) being the equilibrium condition.

2. 1
1+rQ(ST+1, DT+1) − F < 0. In this case, firms would prefer not to launch. Optimization

by individual launchers therefore implies ViT (ST , DT , XT ) = 0. This matches equation (14),

which yields (15) after some algebra. So again by backwards induction the equilibrium path

up to period T will match the one derived in the general model in the main text.

Indeed, it is possible to go one step further: the existence of such a terminal period (where

Xt = 0 ∀t ≥ T ) is possible if and only if Kessler Syndrome occurs along the equilibrium path.

Proposition 4. A terminal period T where X̂t = 0 ∀t ≥ T can exist for an open-access equilibrium

path {X̂t}t if and only if Kessler Syndrome occurs (i.e. limt→∞Dt = ∞) along the open-access

equilibrium path.
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Proof. The proposition asserts that

Xt = 0 ∀t ≥ T ⇐⇒ lim
t→∞

Dt =∞ (112)

We first show the ⇐= direction, then the =⇒ direction.

The “only if” direction, Xt = 0 ∀t ≥ T ⇐= limt→∞Dt =∞: If limt→∞Dt =∞, then there

is some period t̄ such that Dt > Dt̄ for all t > t̄. From the law of motion for D and our assumption

that limt→∞Dt =∞, we can see that Dt must be monotonically increasing after t̄. So there must

exist a period T ≥ t̄ such that L(St, Dt)F > π−rF for all t ≥ T , i.e. where it becomes unprofitable

to launch one more satellite at that or any future period. Thus, Xt = 0 ∀t ≥ T . This completes

the ⇐= direction.

The “if” direction, Xt = 0 ∀t ≥ T =⇒ limt→∞Dt =∞: If Xt = 0 for all t ≥ T then it must

be the case that 1
1+rQ(St+1, Dt+1)− F < 0 for all t ≥ T , else some firm would find it profitable to

launch. Note that it must be unprofitable to launch at t given that there are no launches occurring

at t.

To be explicit in the next steps, we write the satellite and debris stocks with the previous-period

aggregate launch rate Xt shown explicitly as an argument, i.e. writing St+1(Xt) and Dt+1(Xt).

Along a path {St(0)}∞t>T , clearly St+1(0) ≤ St(0). Now, 1
1+rQ(St+1(0), Dt+1(0)) − F < 0 for

all t ≥ T implies that L(St+1(0), Dt+1(0))F > π − rF for all t ≥ T . Monotonicity of L and

St+1(0) ≤ St(0) then imply that Dt+1(0) ≥ Dt(0).

If there exists a threshold DK such that limt→∞Dt(Xt) = ∞ when D > DK for any Xt, then

there are only two possible cases: either limt→∞Dt(0) < DK , or limt→∞Dt(0) ≥ DK . The first

case is a contradiction when G is strictly convex increasing, as each increase in Dt+1 −Dt must be

larger than Dt −Dt−1 so eventually Dt must exceed DK . Only the second case is consistent with

the general physical model. This completes the =⇒ direction.
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Finally, how large is the volume available to be filled? Recent analyses estimate the maximum

capacity consistent with stable orbital populations (i.e. no Kessler Syndrome) between 200-900km

altitude to be on the order of 1.8 million active satellites, assuming no debris (Lifson et al., 2022).

Over the next few decades, the total number of objects slated for launch is expected to be on the

order of 80,000 satellites (Patel, Samira and Koller, Josef S., 2022). It is unclear whether there is

sufficient demand to support hundreds of thousands of satellites, let alone over a million. While we

do not think the maximum capacity described in the engineering literature will be realized due to

both the externalities described here and in the economic literature and the aforementioned demand

limitations, the large capacity available makes the issue seem less one of filling the volume with

satellites or debris than one of operating in the volume becoming too costly due to risk.

C Calibration details

C.1 Data

We calibrate the economic parameters of our model using data collected by The Space Report

(Space Foundation, 2021) on the annual revenues accruing to each sector of the space economy

from 2006-2019. These data have been used in other economic analyses of space and orbit use

(Wienzierl, 2018; Rao, Burgess, and Kaffine, 2020; Crane et al., 2020; Rao and Letizia, 2021). The

data are not ideal for our purpose as they are aggregates covering the entire space sector, but more

granular datasets describing specific LEO satellite operators’ revenues and costs are not available.

To focus on revenues and costs relevant to LEO satellite operators, we use only the variables which

are plausibly attributable to LEO satellite activities. We calculate total LEO satellite operator

revenues as the sum of the “Satellite communications” and “Earth observation” variables, and total

LEO satellite operator costs as the sum of the “Ground stations and equipment”, “Space Situational

Awareness” (SSA), “Insurance premiums”, “Commercial satellite launch”, and “Commercial satellite

manufacturing” variables. We discard variables representing revenues to the direct-to-home televi-

sion, GNT (Geolocation, Navigation, and Timing), and satellite radio sectors, as these are provided

by satellites in higher orbits beyond LEO. We also exclude suborbital commercial human space-

64



flight deposits as they are by definition for transit to regions below orbital altitudes (e.g. 50-80

km above mean sea level). Since our data is recorded annually, we set the period length to 1 year.

We display the calculated variables in table 2. Note that these are not the revenues and costs

accruing specifically to LEO operators—a distinction not possible given our data. Rather, these

variables represent a superset of LEO operator revenues and costs, as they necessarily include some

geostationary satellites. We describe our strategy to account for this issue during calibration in

Appendix C.2.

Table 2: Economic data. Figures are in nominal billion USD. Data from Space Foundation (2021)
and authors’ calculations.

Year Maximum total revenues Maximum total costs
attributable to all operators attributable to all operators

potentially using LEO potentially using LEO
2006 13.800 80.840
2007 16.368 92.956
2008 18.104 85.371
2009 18.695 69.270
2010 19.570 68.460
2011 21.424 83.853
2012 22.747 93.779
2013 23.683 108.199
2014 24.002 127.567
2015 25.884 87.222
2016 26.087 89.201
2017 26.545 95.857
2018 28.420 99.930
2019 27.320 119.160

We calibrate physical parameters of our model using a kinetic gas approximation of orbital

mechanics and data from DISCOS (Letizia et al., 2017; European Space Agency, 2021). These

data describe the launch traffic, active satellites, and tracked debris objects (i.e larger than 10 cm

diameter) in the 600-650 km shell over the 2006-2020 period. These data aggregate over different

types of operators (e.g. commercial operators, civil government operators, defense operators). We

display these data in table 3, along with the collision probability calculated from the kinetic gas

approximation assuming satellite operators avoid 99% of all collisions between satellites and 95%

of all collisions between satellites and tracked debris. Letting the avoidance success rates be κSS
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and κSD, the probability of an unavoidable collision becomes

L(S,D) = (1−κSS)(1−e−αSSS)+(1−κSD)(1−e−αSDD)−(1−κSS)(1−κSD)(1−e−αSSS)(1−e−αSDD).

(113)

Many ostensibly-non-commercial satellites are operated as joint ventures with commercial en-

terprises and many commercial satellite operators serve primarily civil government or defense cus-

tomers, so we do not separate the satellite data by operator type. Further, since all satellites

contribute to debris and collision probability regardless of their operator type, non-commercial op-

erators’ satellites ought to be included in the state vector. Non-commercial operators may also

contribute to the observed “occupancy elasticity” (described precisely in the following section),

further complicating efforts to properly disentangle payoffs to different operator types from the

available data.

The DISCOS physical data also provide object characteristics such as mass and cross-sectional

area, which are necessary for the kinetic gas approximation. We describe the details of the kinetic

gas approximation of orbital mechanics in Appendix C.3.

Table 3: Orbital traffic in the 600-650 km shell. Collision probability is rounded. Data from
European Space Agency (2021) and authors’ calculations.

Year Satellites launched Active satellites Tracked debris Collision probability
satellites

2006 15 25 211 2.95× 10−6

2007 84 31 275 3.84× 10−6

2008 168 47 273 3.85× 10−6

2009 72 43 393 5.48× 10−6

2010 156 53 444 6.20× 10−6

2011 30 56 411 5.76× 10−6

2012 73 53 429 6.00× 10−6

2013 213 64 454 6.37× 10−6

2014 261 97 484 6.87× 10−6

2015 175 122 495 7.09× 10−6

2016 15 114 494 7.05× 10−6

2017 26 122 525 7.49× 10−6

2018 36 139 506 7.28× 10−6

2019 33 155 543 7.83× 10−6

2020 9 158 626 8.97× 10−6
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C.2 Economic calibration

To calibrate our economic model, we make three modifications to the open-access equilibrium

condition in equation (17). First, we allow the per-period satellite payoff and cost to vary over

time, i.e π → πt and F → Ft. This changes the equilibrium condition to

πt+1 = (1 + r)Ft − (1− L(St+1, Dt+1))Ft+1 (114)

=⇒ L(St+1, Dt+1) = 1 +
πt+1

Ft+1
− (1 + r)

Ft
Ft+1

. (115)

This form is similar to the one described in equation (17) but for the time subscripts and term

1 − (1 + r) Ft
Ft+1

. This term represents capital gains accruing to a period t launcher from increases

in the cost of building and launching a satellite in period t + 1. We abstract from operators’

expectations over economic variables and assume they perfectly forecast all t+ 1 objects.

Second, we allow the per-period satellite payoff to depend on the current stock of satellites

in orbit, i.e πt → pt(St). We use a constant elasticity form with exponential factor productivity

growth, pt(St) = πeat(1 + η)Sηt , where η is the “orbital occupancy elasticity of per-period satellite

payoffs”. We assume that the downstream market for satellite outputs is competitive such that

operators do not internalize ∂pt
∂St

. The equilibrium condition becomes

L(St+1, Dt+1) = 1 +
pt+1(St+1)

Ft+1
− (1 + r)

Ft
Ft+1

. (116)

Third, we incorporate exogenous limited satellite lifespans to allow for natural depreciation and

replacement of satellites. Specifically, we assume each satellite is replaced with probability µ each

period. We calibrate this value explicitly to simulate object stocks (described in the Appendix C.3);

for now, we leave this to be adjusted in the regression-based calibration approach described below.

The final equilibrium condition for our simulations is

L(St+1, Dt+1) = 1 +
1

1− µ
pt+1(St+1)

Ft+1
− 1 + r

1− µ
Ft
Ft+1

. (117)

To simulate future periods under different returns growth rate and occupancy elasticity assump-

67



tions, we estimate the growth rate of total LEO satellite operator costs. We estimate

log(Ft) = ηF0 + ηF1 t+ νFt , (118)

where log(Ft) is the natural log of total LEO satellite operator costs, t is the year, the growth

rate (the object of interest) is g = exp(ηF1 ) − 1, and the regression error is νFt . The estimated

growth rate is roughly 2.5%, which is consistent with Crane et al. (2020).

There are two final steps to our procedure: ensuring consistency between the occupancy elasticity

and factor productivity parameters, and accounting for unobserved variables. To ensure consistency

between the assumed elasticity and implied orbital slot factor productivity and match the final

observed value of LEO-using sector revenues ($27.32b in 2019, see table 2), we calibrate the factor

productivity term π in equation 25. Specifically, letting K be the observed value to match for each

assumed elasticity value ηj , setting t = 0 and S0 to the shell-specific initial condition (S0 = 158),

the factor productivity term πj satisfies

πj = exp(log(K)− log(1 + η) + η log(S0)). (119)

Finally, as mentioned in the previous section, using maximum total sector revenues and costs

directly from the data in table 2 as though the data reflects only operators in the 600-650 km shell

is challenging for two reasons. First, the data in table 2 cover all satellite operators—our variable

selection step is the only thing restricting the set of operators included in the data. Even if we were

successful in removing all operators outside of LEO through variable selection when calculating

total LEO operator revenues and costs, the revenue and cost variables will still include operators

outside the 600-650 km shell. The data aggregation implies an unobservable “shell-share” coefficient,

s ∈ [0, 1), scaling observed aggregate revenues and costs to reflect only the portion attributable to

satellites in the 600-650 km shell. Second, theory predicts that the discount rate used by operators

is a critical parameter in determining LEO use, but this parameter is unobserved.

Fortunately, equation 115 offers a way to address both challenges. Letting πt be the total LEO

satellite operator revenues and Ft be the total LEO satellite operator costs from table 2, and Lt

be the collision probability shown in table 3, we estimate the following regression on data from
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2006-2019:

Lt = γ0 + γ1
πt
Ft

+ γ2
Ft−1

Ft
+ et. (120)

The estimated “adjustment coefficients” (γ0, γ1, γ2) reflect the shell-share s, the discount rate

r, as well as the satellite turnover µ (though they are not separately identified). We use the

adjustment coefficients to simulate the model in future periods given projected growth in πt and

Ft. If the shell-share coefficients (labeled s in the preceding discussion) are common to revenues

and costs and time-invariant (or “close” and “slowly-varying”), they will (almost) cancel out of the

ratios we use in equation (120) and our estimated adjustment coefficients would only reflect satellite

turnover and discounting.33

C.3 Physical calibration

Here we describe key equations and the ridge regression approach to correcting for non-random

object paths. Readers interested in detailed explanations of the physics-based elements of our

calibration approach, including derivations and validation, are referred to Letizia (2016).

We require physically-appropriate values for the following parameters: δ, µ, αSS , αSD, αDD,

βSS , βSD, βDD. Calibrating δ and µ (the mean debris decay rate and mean satellite active lifetime

time) are the most straightforward. We take data from ESA regarding the residence time δr of

debris objects and lifetime of active satellites µr at different altitudes (European Space Agency,

2021). We set the decay rate for debris objects as δ = min{1−δ−1
r , 1} and the natural turnover rate

for satellites as as µ = min{1− µ−1
r , 1}. For both parameters we calculate share-weighted averages

across object types within the category to reflect the effects of heterogeneous object dimensions,

e.g. δ reflects the weighted average of decay times for rocket bodies, fragments, and intact derelict

objects.34 We calculate the share-weighted decay rate in the 600-650 km shell is roughly 7% every

year.35 The share-weighted average active LEO satellite lifetime is roughly 6.71 years. This implies

33This is not the only interpretation of our estimates—as described in Rao, Burgess, and Kaffine (2020), the
adjustment coefficients may also reflect unmodeled frictions in satellite launching and operation.

34Cross-sectional area and mass are key determinants of orbital residence times. Both can vary significantly
within object classes.

35At these altitudes, the decay rates from higher shells rapidly approach zero. For the 650-700 km shell,
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roughly 15% of active satellites in LEO turn over every year on average, i.e the fraction remaining

is 1− µ = 0.85.

We calibrate the parameters of L and G in two steps. First, we compute the collision probability

and new fragment formation parameters using a kinetic gas approximation similar to the one used

in Letizia et al. (2017) and Letizia, Lemmens, and Krag (2018) as well as analytical fragmentation

formulas from Krisko (2011) and Letizia (2016) calibrated to the NASA standard breakup model.

These formulas require data on object mass and cross-sectional area, which we obtain from DISCOS.

The DISCOS parameters describe average values across different types of active satellites and debris

objects, so we compute share-weighted averages for active satellites and debris objects. The kinetic

gas approximation implies that objects within the shell are moving randomly, leading to our next

step. Second, to adjust for the non-random motion of objects in the shell, we regularize the expected

fragmentation components of G by estimating a ridge regression on the debris law of motion using

data in table 3 and the analytically-computed parameter values. We also use this second step

to jointly estimate the launch debris parameter m from the ridge regression. We describe our

procedure for calibrating the physical model parameters in more detail in Appendix section C.3.

Table 4 summarizes the calibrated parameter values.

To calculate the intrinsic collision probabilities αSS , αSD, αDD, we start with data regarding

object cross-sectional areas for active satellites (commercial, military, civil government, and other)

and intact debris objects. We assume debris fragments are uniform aluminium spheres of diameter

10 cm, and treat all other objects as uniform spheres as well. We compute the cross-sectional areas

of active satellites and debris within each shell as share-weighted averages over 2006 2019 across the

types of objects within each class, e.g. if 20% of the debris objects are intact and 80% are fragments

we calculate the area as 0.2 ∗ (intact area) + 0.8 ∗ (fragment area). Under these assumptions the

rate at which a reference object moving randomly at speed s in a closed space of volume V is struck

by an object of cross-sectional area a is
sa

V
, (121)

the share-weighted average decay rate is roughly 5%, and for the 700-750 km shell the decay rate is 3%.
We therefore neglect objects entering the 600-650 km shell from higher altitudes as they are unlikely to
significantly change our results.
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Table 4: Summary of calibrated parameter values for the 600-650 km shell. Values are rounded to
the nearest integer or second non-zero decimal place.

Parameter Value Notes

ηF1 0.025 Total costs growth parameter. Standard error is 0.009.
γ0 3.35e-06 Equilibrium adjustment coefficient 1 (open-access capital gains).
γ1 2.22e-05 Equilibrium adjustment coefficient 2 (gross satellite rate of return).
γ2 -2.67e-06 Equilibrium adjustment coefficient 3 (open-access capital gains).
δ 0.074 Annual fraction of debris decaying to lower shell.
µ 0.15 Annual active satellite turnover rate
αSS 2.73e-07 Satellite-satellite collision rate parameter.
αSD 2.73e-07 Satellite-debris collision rate parameter.
αDD 2.78e-07 Debris-debris collision rate parameter.
κSS 0.99 Fraction of satellite-satellite collisions successfully avoided.
κSD 0.95 Fraction of satellite-debris collisions successfully avoided.
β̃SS 1,800 Expected number of fragments from satellite-satellite collision. (regularized).
β̃SD 333 Expected number of fragments from satellite-debris collision. (regularized).
β̃DD 327 Expected number of fragments from debris-debris collision (regularized).
m 0.013 Expected number of launch debris remaining in shell after 1 year (regularized).

where the volume is determined by the altitude and our assumption of that the space is a

spherical shell, and the speed is determined by the altitude, the Earth’s gravitational constant, and

our assumption that the objects are uniform spheres.

To calculate the unadjusted fragmentation rates, we use data on average object masses from

ESA along with a formula found to fit the high-fidelity NASA standard breakup model described

in Krisko (2011). Letting the mass of the object struck be M , and assuming the object is shattered

into uniform 10 cm spheres, the number of fragments from a catastrophic collision n is

n = 0.1M0.750.1−1.71. (122)

The only steps remaining are to adjust our estimate of the expected number of fragments from

collisions for the non-random motion of objects in the shell, and to set the value of the launch

debris parameter m. ODE-based engineering models of the debris environment use such adjustment

coefficients based fitting the ODE model to results from many computationally-costly runs of high-

fidelity orbital environment models, e.g. as in Somma et al. (2017); Somma (2019). This approach
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would be even costlier for our model, as the launch rate is endogenous, and would not provide a

useful estimate of the launch debris parameter m. We instead perform the adjustment and estimate

m jointly using historical data and ridge regression, a regularization technique used to improve

out-of-sample predictive performance at the expense of in-sample fit. Ridge regression achieves this

goal by exploiting the bias-variance trade-off, shrinking parameter values toward zero in exchange

for reduced prediction variance (Hoerl, Kennard, and Hoerl, 1985; Zou and Hastie, 2005).

Since satellites are specifically coordinated to reduce collisions, the adjustment for non-random

motion should involve shrinking the expected number of fragments from a collision (with the ex-

pectation taken over the probability of a collision) toward zero. Ridge regression achieves this goal.

Additionally, ridge regression is often used when the number of variables is “large” relative to the

number of observations or when parameter estimates are known to be noisy due to (for example)

high degrees of collinearity. Our model and data satisfy the former condition (with 4 parameters to

estimate from 14 observations), and our physical calibration approach (specifically the assumption

that all objects are uniform spheres) causes collinearity in our collision probability values. Since

our collision model prescribes the functional form of the collision probability as (1− exp(−αjkk)),

the effect of non-random motion on new debris growth cannot be separately identified from αjk

and βjk. This is convenient for our regression-based adjustment, since it allows us to pose the ridge

regression as a linear model. Specifically, letting x̄ denote a physically-calibrated parameter value,

we estimate the following regression:

Dt+1 − (1− δ)Dt = ρSSβSS(1− exp(−αSSSt)) + ρSDβSD(1− exp(−αSDSt)) + ρDDβDD(1− exp(−αDDDt)) +m+ νDt ,

(123)

where ρSS , ρSD, ρDD,m are parameters to be estimated and νDt is the error term. The final

regularized estimates of the fragmentation and launch debris parameters are shown in table 4 as

β̃SS , β̃SD, β̃DD, m.
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D Algorithms for equilibrium and optimum

To describe how we generate initial guesses for the social planner’s problem, it is useful to formally

state a finite-horizon sequence version of the planner’s problem. Letting T be the final period, the

planner’s finite-horizon sequence problem is

max
{Xt,St+1,Dt+1}Tt=0

StQ(St, Dt, Xt) +
1

1 + r

T−1∑
τ=t

1

1 + r

τ−t−1

Xτ

(
1

1 + r
Q(Sτ+1, Dτ+1, Xτ+1)− F

)
(124)

s.t. Q(St, Dt, Xt) = π +
1

1 + r
(1− L(St, Dt))Q(St+1, Dt+1, Xt+1) if t < T

Q(ST , DT , XT ) = π

St+1 ≤ St(1− L(St, Dt)) +Xt

Dt+1 ≥ Dt(1− δ) +G(St, Dt) +mXt

Xt ∈ [0, X̄] ∀t

St+1 ≥ 0, Dt+1 ≥ 0

S0 = s0, D0 = d0.

The guess generation in algorithm 1 uses a result from Easley and Spulber (1981), that optimal

plans generated from solving a finite horizon problem with sufficiently-large T closely approximate

infinite-horizon optimal plans. Algorithm 1 describes our solution procedure more precisely.

Generating the open-access policy function is much simpler. At each node on a grid over S and

D values (e.g. G1 as in Algorithm 1), we solve the open-access condition

π − rF − L(S′(X,S,D), D′(X,S,D))F = 0 (125)

for the open-access launch rate X.

To generate the phase diagrams, we use solved policy functionsX to compute the evolution of the

satellite and debris stocks at each grid node. More precisely, we compute dS = (S′(X,S,D)−S)/h

and dD = (D′(X,S,D) − S)/h for a fixed positive value h. The value of h is chosen to make

the plotting more stable; we use h = 10, but other values yield similar results. The nullclines are
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Algorithm 1: Solve the planner’s problem
1 Generate a sparse initial grid, G0, over (S,D) ∈ R[0,a] × R[0,b], a, b > 0.
2 At each point on G0, solve program 124 with T equal to a large number. Larger is better; we use

T = 150, which balances compute time with guess quality. This produces an initial guess on a
sparse grid, ṽ0.

3 Using linear interpolation, “infill” ṽ0 (defined on G0) to v0 (defined on G1). G1 has the same
boundaries as G0 ((S,D) ∈ R[0,a] × R[0,b]) but contains more points. This gives an initial guess
defined on a denser grid.

4 Set δ to some large number (we use 10) and ε to some small number (we use 1% of the mean
value of v0). Set i = 0 and W0(S,D) = v0.

5 while δ > ε do
6 At each node in G1, solve program 22 with W (St+1, Dt+1) = Wi(St+1, Dt+1). Label the value

function obtained as Wi+1(S,D), defined over G1. We use linear interpolation to compute
Wi(St+1, Dt+1) when (St+1, Dt+1) is between nodes of G1.

7 δ ← ||Wi(S,D)−Wi+1(S,D)||∞.
8 i ← i+1
9 end

plotted as the zero-isoclines of dS and dD.
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